

IEC 60364-6, EN 50110-1

3-447-158-03 4/10.23

- · Testing of residual current devices (RCCBs)
- Measurement of touch voltage without tripping the RCCB Touch voltage is measured with reference to nominal residual current using ½ of the nominal residual current value.
- Testing for N-PE reversal
- Tripping test with nominal residual current, measurement of time to trip
- Testing of equipment and RCCBs with rising residual current including indication of tripping current and touch voltage
- Testing of RCCBS with the following nominal current values: $\frac{1}{2} \times I_{AN}$, $1 \times I_{AN}$, $2 \times I_{AN}$, $5 \times I_{AN}$ to 300 mA
- Intelligent ramp (PROFITEST MF XTRA only): simultaneous measurement of breaking current $I_{\Delta N}$ and breaking time t_{A}
- Testing of selective S SRCDs, PRCDs (SCHUKOMAT, SIDOS or comparable), type G/R, type AC, types A and F, types B and B+ and type EV
- Testing of RCCBs which are suitable for pulsating residual direct current – testing is conducted with positive or negative half-waves.
- Creation of test sequences (IZYTRONIQ)
- Intelligent data transmission
- Simulation of operating states of electric vehicles at charging stations with adapter

Large Voltage and Frequency Ranges

A broad-range measuring device permits use of the test instrument in all alternating and 3-phase electrical systems with voltages from 65 to 500 V and frequencies of 16 to 400 Hz.

Loop and Line Impedance Measurement

Measurement of loop and line impedance can be performed in the 65 to 500 V range. Conversion to short-circuit current is based on the respective nominal line voltage, insofar as the measured line voltage is within the specified range. Test instrument measuring error is also taken into account for conversion. Outside of this range, short-circuit current is calculated on the basis of momentary line voltage and measured impedance.

Insulation Resistance Measurement Using Nominal Voltage, with Variable or Rising Test Voltage

Insulation resistance is usually measured with a nominal voltage of 500, 250 or 100 V. A test voltage which deviates from nominal voltage, and lies within a range of 20/50 to 1000 V, can be selected for measurements at sensitive components, as well as systems with voltage limiting devices.

Measurement can be performed with a constantly rising test voltage in order to detect weak points in the insulation and determine tripping voltage for voltage limiting devices.

Voltage at the device under test and any triggering/breakdown voltage appear at the test instrument's display.

Standing-Surface Insulation Measurement

Standing-surface insulation measurement is performed with momentary line frequency and line voltage.

Low-Resistance Measurement

Bonding conductor resistance and protective conductor resistance can be measured with a test current of \geq 200 mA DC, automatic polarity reversal of the test voltage and selectable current flow direction. If the adjustable limit value is exceeded, an LED lights up.

Earthing Resistance Measurement

In addition to measurement of the overall resistance of an earthing system, selective measurement of the earthing resistance of an individual earth electrode is also possible, without having to disconnect it from the earthing system. A current clamp sensor available as an accessory is utilized to this end.

Moreover, PROFITEST MF XTRA allows for battery-powered "battery operation" earth resistance measurements: 3-/4-pole and earth loop resistance measurements.

Universal Connector System

The interchangeable plug inserts and 2-pole plug-in adapter – which can be expanded to 3-poles for phase sequence testing – allows for use of the test instrument all over the world.

Special Features

- Display of approved fuse types for electrical systems
- · Energy meter start-up testing
- Measurement of biasing, leakage and circulating current of up to 1 A, as well as working current of up to 1000 A with current clamp sensor (available as an accessory)
- Phase sequence measurement (including highest line-to-line voltage)

IEC 60364-6, EN 50110-1

Display with Selectable Language

Menus, setting options, measurement results, tables, notes and error messages as well as schematic diagrams appear at the LCD. The display can be set to the desired language depending on the country in which the test instrument is used: D, GB, I, F, E, P, NL, S, N, FIN, CZ or PL.

Operation

Device functions are selected directly with the help of a rotary selector knob. Softkeys allow for convenient selection of subfunctions and parameter settings. Unavailable functions and parameters are automatically prevented from appearing at the display.

The start and RCD tripping functions included directly on the instrument are identical to the functions of the two keys located on the test plug, allowing for easy measurement at difficult to access locations.

Schematic diagrams, measuring ranges and help texts can be displayed for all basic functions and sub-functions.

Phase Tester

Protective conductor potential is tested after starting a test sequence and touching the contact surface for finger contact. The PE symbol appears at the display if a potential difference of more than 25 V is detected between the contact surface and the protective contact at the mains plug.

Error Indication

- The instrument automatically detects instrument-to-system connection errors, which are indicated in a connection pictograph.
- Errors within the electrical system (no mains or phase voltage, tripped RCD) are indicated at 3 LEDs and in the tilting LCD panel.

Battery Monitoring and Self-test

Battery monitoring is conducted while the instrument is subjected to an electrical load. Results are displayed both numerically and with a symbol. Test images can be called up one after the other, and LEDs can be tested during the self-test. The tester is shut down automatically when the batteries are depleted. A microprocessor controlled charging circuit is used to assure safe charging of rechargeable batteries.

USB ports

The instrument is equipped with a type A and type B USB port each.

The type A USB port allows for using a USB keyboard, a barcode scanner or an RFID scanner.

Test structures and test sequences are transferred from a PC to the test instrument via the type B USB port. Measurement data are transmitted to a PC after testing, at which they can be printed in report form and archived.

PC Database and Report Generating Software - IZYTRONIQ

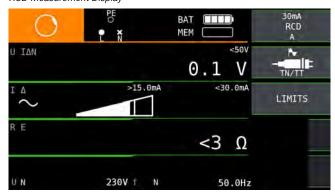
IZYTRONIQ is newly developed test software with which the entire testing scenario can be visualized, managed and documented in an audit-proof, instrument-independent fashion. And thus for the first time ever, measurement and test data from various test instruments and multimeters can be combined into a single test and documented. Intuitive operation and a modern look assure quick access to all functions.

The software is available on different scales and in different versions for the commercial trades, for industry and for training applications.

All test instruments included in the PROFITEST MF series can be managed by IZYTRONIQ, with which their measured values can also be documented.

Further information regarding user software is available on the Internet at www.izytron.com.

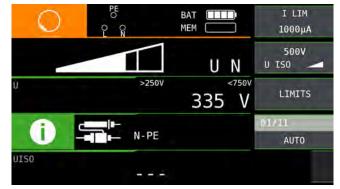
Instrument Updates


The test instrument can always be kept current because the firm-ware/software can be updated via the USB port. Updating is executed during the course of recalibration by our service department, or directly by the customer.

Display

(illustrative selection)

Softkeys allow for convenient selection of sub-functions and parameter settings. Unavailable sub-functions and parameters are automatically prevented from appearing at the display.


RCD Measurement Display

Loop Resistance Measurement Display

Insulation Measurement Display

IEC 60364-6, EN 50110-1

Features of Instrument Variants PROFITEST MF		
	ТЕСН	XTRA
Testing of residual current devices (RCDs)		
U _B measurement without tripping the RCD	/	✓
Tripping time measurement	1	/
Measurement of tripping current I _F	1	/
Selective, SRCDs, PRCDs, type G/R	/	/
AC/DC sensitive RCDs, types B and B+	/	/
DC-sensitive RDC-DDs and RCMBs	/	/
Testing of insulation monitoring devices (IMDs)		/
Testing Residual Current Monitoring Devices (RCMs)	_	/
Testing for N-PE reversal	√	/
Measurement of loop impedance Z _{L-PE} / Z _{L-N}		
Fuse table for systems without RCDs	√	/
Without tripping the RCD, fuse table	/	1
15 mA measurement 1)	/	/
Earth resistance R _E (mains operation)		
I/U measuring method (2/3-wire measuring method via	1	✓
measuring adapter: 2-pole/2-pole + probe)		
Earthing resistance R _E (battery operation)		/
3 or 4-wire measuring method via PRO-RE adapter		_
Soil resistivity $ ho_{E}$ (battery operation)	_	/
(4-wire measuring method via PRO-RE adapter)		•
Selective earth resistance R _E (mains operation)		_
with 2-pole adapter, probe, earth electrode and current	/	/
clamp sensor (3-wire measuring method)		
Selective earth resistance R _E (battery operation) with probe,		/
earth electrode and current clamp sensor (4-wire measuring		•
method via PRO-RE adapter and current clamp sensor)		
Earth loop resistance R _{ELOOP} (battery operation) with 2 clamps (current clamp sensor direct and current		,
clamp transformer via PRO-RE/2 adapter)		•
Measurement of equipotential bonding R _{LO}		
Automatic polarity reversal	1	1
Insulation resistance R _{INS}		_
Variable or rising test voltage (ramp)	/	/
Voltage U _{L-N} / U _{L-PE} / U _{N-PE} / f	1	/
Special Measurements		
I _L , I _{AMP} current measurement with clamp	/	/
Power measurement with clip S ²⁾	/	
Phase sequence	1	
Earth leakage resistance R _{E(INS)}	/	
Voltage drop (\(\Delta \text{U} \)	/	-
Standing-surface insulation Z _{ST}	1	/
Meter start-up (kWh test)	/	✓
Leakage current with PRO-AB (IL) adapter	_	✓
Residual voltage test (Ures)		· /
Intelligent ramp (ta + \Delta I)		✓
Electric vehicles at charging stations (IEC 61851-1)	/	✓
Documentation of fault simulations at PRCDs with the		
PROFITEST PRCD adapter	_	1
Features		
Selectable user interface language ³⁾	1	/
Memory (database for up to 50,000 objects)	1	✓
Automatic test sequence function	<i>\</i>	✓
Type A USB port (connection of USB keyboard/barcode	V	-
scanner/RFID scanner)	1	✓
Type B USB port (data transmission)	/	
PC database and report generating software IZYTRONIQ ⁴⁾	✓ ✓	✓
Measuring category: CAT III 600 V / CAT IV 300 V	✓ ✓	✓
DAKKS calibration certificate	1	/
שבווטו מווטו מנוטוו טפו נוווטמנס	V	

 $^{^{1)}\,}$ The so-called live measurement is only advisable if there's no bias current within the system. Only suitable for motor protection switches with small nominal current values.

4) IZYTRONIQ BUSINESS Starter (IZYTRONIQ CLOUD); Exception: PROFITEST MF XTRA (LEMONGREEN): IZYTRONIQ BUSINESS PROFESSIONAL (IZYTRONIQ CLOUD)

Applicable Regulations and Standards

IEC 60364-6 EN 50110-1	Operation of electrical installations – Part 100: General requirements
EN 60529	Test instruments and test procedures Degrees of protection provided by enclosures (IP code)
IEC 60364-6	Low-voltage electrical installations – Part 6: Tests
IEC 60364-7-710	Low-voltage electrical installations – Requirements for special installations or locations – Part 710: Medical locations
IEC 61010/ EN 61010	Safety requirements for electrical equipment for measurement, control and laboratory use Part 1: General requirements (IEC 61010-1 + cor.) Part 31: Safety requirements for hand-held probe assemblies for electrical measurement and test (IEC 61010-031 + A1
IEC 61140 DIN EN 61140	Protection against electric shock Common aspects for installations and equipment
DIN EN 61326-1	Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements
IEC 61557/ EN 61557	Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC — Equipment for testing, measuring or monitoring of protective measures Part 1: General requirements (IEC 61557-1) Part 2: Insulation resistance (IEC 61557-2) Part 3: Loop resistance (IEC 61557-3) Part 4: Resistance of earth connection and equipotential bonding (IEC 61557-4) Part 5: Earthing resistance (IEC 61557-5) Part 6: Effectiveness of residual current devices (RCDs) in TT, TN and IT systems (IEC 61557-6) 6 Part 7: Phase sequence (IEC 61557-7) Part 10: Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC — Equipment for testing, measuring or monitoring of protective measures (IEC 61557-10) Part 11: Effectiveness of type A and type B residual current monitors (RCMs) in TT, TN and IT systems (IEC 61557-11) (PROFITEST MF XTRA only)
IEC 61851-1 DIN EN 61851-1	Electrical equipment for electric vehicles — Electric vehicle conductive charging systems — Part 1: General requirements

Nominal ranges of use

Voltage U _N	120 V (108 V 132 V)
	230 V (196 V 253 V)
	400 V (340 V 440 V)
Frequency f _N	16 ¾ Hz (15.4 Hz 18 Hz)
	50 Hz (49.5 Hz 50.5 Hz)
	60 Hz (59.4 Hz 60.6 Hz)
	200 Hz (190 Hz 210 Hz)
	400 Hz (380 Hz 420 Hz)
Overall voltage range	65 V 550 V
Overall frequency range	15.4 Hz 420 Hz
Line voltage	Sinusoidal
Temperature range	0 °C + 40 °C
Battery voltage	8 V 12 V
Line impedance angle	Corresponds to $\cos \varphi = 1 \dots 0.95$
Probe resistance	$<$ 50 k Ω

¹⁵ mA test current only applies if the RCD is set for $I_{\Delta N} = 30$ mA. Otherwise test current = $1/2 \times I_{\Delta N}$ of the preselected RCDs.

²⁾ as from firmware 1.0.3
3) Currently available languages D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL

PROFITEST MF Series PROFITEST MF XTRA, MF TECH IEC 60364-6, EN 50110-1

Characteristic Values PROFITEST MF TECH

											Con	nection	ıs		
Func- tion	Measured Quantity	Display Range	Reso- lution	Input Impedance / Test Current	Measuring range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert 1	2-Pole Adapter	3-pole	Probe	Cla	mp Me ⁻ Z3512A	MELEV
	U _{L-PE} U _{N-PE}	0 V 99.9 V 100 V 600 V	0.1 V 1 V		0.3 V 600 V ¹		±(l2% rdg.l+5d) ±(l2% rdg.l+1d)	±(l1% rdg.l+5d) ±(l1% rdg.l+1d)							
	f	15.0 Hz 99.9 Hz 100 Hz 999 Hz	0.1 Hz 1 Hz		DC 15.4 Hz 420 Hz	$U_N = 120 \text{ V},$ 230 V, 400 V,	±(I0.2% rdg.l+1d)		•	•	•				
U	U _{3 AC}	0 V 99.9 V 100 V 600 V	0.1 V 1 V	5 ΜΩ	0.3 V 600 V	500 V	±(l3% rdg.l+5d) ±(l3% rdg.l+1d)	±(l2% rdg.l+5d) ±(l2% rdg.l+1d)			•				
	U _{Probe}	0 V 99.9 V 100 V 600 V	0.1 V 1 V		1.0 V 600 V	f _N = 16.7 Hz, 50 Hz, 60 Hz, 200 Hz, 400 Hz	±(l2% rdg.l+5d) ±(l2% rdg.l+1d)	±(I1% rdg.I+5d) ±(I1% rdg.I+1d)				•			
	U _{L-N}	0 V 99.9 V 100 V 600 V	0.1 V 1 V		1.0 V 600 V ¹	200 112, 400 112	±(l3% rdg.l+5d) ±(l3% rdg.l+1d)	±(I2% rdg.I+5d) ±(I2% rdg.I+1d)	•	-	•				
	U _{IΔN}	0 V 70.0 V	0.1 V	$0.3 \times I_{\Delta N}$	5 V 70 V		+l10% rdg.l+1d	+ 1% rdg.l-1d + 9% rdg.l+1d							
		10 Ω 999 Ω 1.00 kΩ 6.51 kΩ		$I_{\Delta N} = 10 \text{ mA} \times 1.05$											
	R _E	3 Ω 999 Ω 1 kΩ 2.17 kΩ 1Ω 651 Ω	1 Ω 0.01 kΩ 1Ω	$I_{\Delta N} = 30 \text{ mA} \times 1.05$ $I_{\Delta N} = 100 \text{ mA} \times 1.05$	Calculated value Off	U _N = 120 V,									
	'E	0.3 Ω 99.9 Ω 100 Ω 217 Ω	0.1 Ω 1 Ω	$I_{\Delta N} = 300 \text{ mA} \times 1.05$	$R_{E} = U_{I\Delta N} / I_{\Delta N}$	230 V, 400 V ²									
		$0.2 \Omega \dots 9.9 \Omega$ $10 \Omega \dots 130 \Omega$	0.1 Ω 1 Ω	$I_{\Delta N}$ =500 mA × 1.05		f _N = 50 Hz, 60 Hz									
l _{∆N}	$I_F (I_{\Delta N} = 6 \text{ mA})$ $I_F (I_{\Delta N} = 10 \text{ mA})$ $I_F (I_{\Delta N} = 30 \text{ mA})$	1.8 mA 7.8 mA 3.0 mA 13.0 mA 9.0 mA 39.0 mA	0.1 mA	1.8 mA 7.8 mA 3.0 mA 13.0 mA 9.0 mA 39.0 mA		$U_L = 25 \text{ V}, 50 \text{ V}$			•	•		option ally			
	$I_F (I_{\Delta N} = 100 \text{ mA})$ $I_F (I_{\Delta N} = 300 \text{ mA})$	30 mA 130 mA 90 mA 390 mA	1 mA 1 mA	30 mA 130 mA 90 mA 390 mA	30 mA 130 mA 90 mA 390 mA	I _{ΔN} = 6 mA, 10 mA,	±(I5% rdg.I+1d)	±(13.5% rdg.l+2d)				,			
	$I_F (I_{\Delta N} = 500 \text{ mA})$ $U_{I\Delta} / U_L = 25 \text{ V}$	0 V 25.0 V	1 mA - 0.1 V	Same as I _A	150 A 650 mA 0 V 25.0 V	30 mA, 100 mA, 300 mA.	+l10% rdg.l+1d	+ 1% rdg. -1d							
	$U_{I\Delta} / U_{L} = 50 \text{ V}$ $t_{A} (I_{\Delta N} \times 1)$	0 V 50.0 V 0 ms 1000 ms	1 ms	6 mA 500 mA	0 V 50.0 V 0 ms 1000 ms	300 mA, 500 mA ²	-	+l9% rdg.l+1d	-						
	$t_A (I_{\Delta N} \times 2)$	0 ms 1000 ms	1 ms	2 × 6 mA 2 × 500 mA	0 ms 1000 ms		±4 ms	±3 ms							
	$t_A (I_{\Delta N} \times 5)$	0 ms 40 ms	1 ms	5 × 6 mA 5 × 300 mA	0 ms 40 ms	11 100 1/									
	Z _{L-PE} ()	$0~\text{m}\Omega~\dots~999~\text{m}\Omega$ $1.00~\Omega~\dots~9.99~\Omega$	1 mΩ 0.01 Ω 0.1 Ω	1.3 A AC	$0.15 \Omega \dots 0.49 \Omega$ $0.50 \Omega \dots 0.99 \Omega$ $1.00 \Omega \dots 9.99 \Omega$	$\begin{array}{c} U_{N} = 120 \text{ V,} \\ 230 \text{ V, } 400 \text{ V,} \\ 500 \text{ V}^{1} \\ f_{N} = 16.7 \text{ Hz}^{8}, 50 \text{ Hz,} \\ 60 \text{ Hz} \end{array}$	±(I10% rdg.I+30d) ±(I10% rdg.I+30d) ±(I5% rdg.I+3d)	±(I5% rdg.I+30d) ±(I4% rdg.I+30d) ±(I3% rdg.I+3d)							
_	Z _{L-PE} + DC	$0 \text{ m}\Omega \dots 999 \text{ m}\Omega$ $1.00 \Omega \dots 9.99 \Omega$ $10.0 \Omega \dots 29.9 \Omega$		3.7 A AC 0.5 A DC, 1.25 A DC	0.25 Ω 0.99 Ω 1.00 Ω 9.99 Ω										
Z _{L-PE}	I _K (Z _{L-PE} ,	0 to 9.9 A 10 A 999 A 1.00 kA 9.99 kA	0.1 A 1 A 10 A		120 (108 132) V 230 (196 253) V 400 (340 440) V		Value calcula	ted from Z _{L-PE}	•	• Z _{L-PE}					
-L-IN	+ DC)	10.0 kA 50.0 kA 0.6 Ω 9.9 Ω	100 A 0.1 Ω		500 (450 550) V	splay range only			-						
	Z _{L-PE} (15 mA ⁹)	10.0 Ω 99.9 Ω 100 Ω 999 Ω	0.1 Ω 1 Ω		10.0 Ω 99.9 Ω 100 Ω 999 Ω	U _N = 120 V, 230 V	±(I10% rdg.I+10d) ±(I8% rdg.I+2d)	±(I2% rdg.I+2d) ±(I1% rdg.I+1d)							
	I _K (15 mA ⁹)	100 mA 999 mA 0.00 A 9.99 A 10.0 A 99.9 A	1 mA 0.01 A 0.1 A	15 mA AC ⁹	Calculated value depending on U_N and Z_{L-PE} : $I_K = U_N/10~\Omega~1000~\Omega$	f _N = 16.78, 50 Hz, 60 Hz	Value calculated fr $I_K = U_N/Z_{L-}$	om Z _{L-PE} (15 mA ⁹): _{PE} (15 mA ⁹)							
	R _E (with probe) [R _E (without probe) values same as	$0 \text{ m}\Omega \dots 999 \text{ m}\Omega$ $1.00 \Omega \dots 9.99 \Omega$ $10.0 \Omega \dots 99.9 \Omega$ $100 \Omega \dots 999 \Omega$	1 mΩ 0.01 Ω 0.1 Ω 1 Ω	1.3 A AC 3.7 A AC 1.3 A AC 3.7 A AC 1.3 A AC 3.7 A AC 400 mA AC 40 mA AC	$0.15 \Omega \dots 0.49 \Omega$ $0.50 \Omega \dots 0.99 \Omega$ $1.0 \Omega \dots 9.99 \Omega$ $10 \Omega \dots 99.9 \Omega$ $100 \Omega \dots 999 \Omega$	$U_N = 120 \text{ V}, 230 \text{ V}$ $U_N = 400 \text{ V}$ ¹ $f_N = 50 \text{ Hz}, 60 \text{ Hz}$	±(110% rdg.l+30d) ±(15% rdg.l+3d) ±(110% rdg.l+3d)	±(I3% rdg.I+3d) ±(I3% rdg.I+3d)							
R _E	Z _{L-PE}]	$1 \text{ k}\Omega \dots 9.99 \text{ k}\Omega$ $0 \text{ m}\Omega \dots 999 \text{ m}\Omega$ $1.00 \Omega \dots 9.99 \Omega$ $10.0 \Omega \dots 29.9 \Omega$	0.01 kΩ 1 mΩ 0.01 Ω 0.1 Ω	4 mA AC 1.3 A AC 3.7 A AC 0.5 A DC, 1.25 A DC	$1 \text{ k}\Omega \dots 9.99 \text{ k}\Omega$ $0.25 \Omega \dots 0.99 \Omega$ $1.00 \Omega \dots 9.99 \Omega$		\pm (10% rdg.l+3d) \pm (118% rdg.l+30d) \pm (110% rdg.l+3d)	±(16% rdg.1+50d)	•	•		•			
	U _E	0 V 253 V	1 V	_	Calculated value										
R _E Sel	R _E	0 Ω 999 Ω	$1 \text{ m}\Omega \dots$ 1Ω $1 \text{ m}\Omega \dots$	1.3 A AC 2.7 A AC 0.5 A DC/1.25 A DC	$0.25\Omega\dots300\Omega^{4}$	See R _E	, ,	±(l15% rdg.l+20 d)						•	
Clamp	R _E DC+	0 Ω 999 Ω 10 kΩ 199 kΩ	1Ω		10 kΩ 199 kΩ	f _N = 50 Hz, 60 Hz		±(l15% rdg.l+20 d) ±(l10% rdg.l+3d)							
EXTRA	Z _{ST}	200 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 30.0 MΩ	1 kΩ 1 kΩ 0.01 MΩ 0.1 MΩ	2.3 mA at 230 V	200 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 30.0 MΩ	$U_0 = U_{L-N}$	$\pm (20\% \text{ rdg.} +2d)$ $\pm (10\% \text{ rdg.} +2d)$,	•	•	•	•			

IEC 60364-6, EN 50110-1

Characteristic Values PROFITEST MF TECH

F	Manageman		Dana			Naminal	Magazzina	luduiu ai a			Con	nectio			
Func- tion	Measured Quantity	Display Range	Reso- lution	Test Current	Measuring range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert 1	2-Pole Adapter	3-pole adapter	Clam WZ12 C	nps / M Z3512 A	eas. Ra MFLEX P300	anges CP1100
		1 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 49.9 MΩ	100 kΩ		50 kΩ 999 kΩ 1.00 MΩ 49.9 MΩ	$\begin{array}{c} U_N = 50 \text{ V} \\ I_N = 1 \text{ mA} \end{array}$									
		1 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 99.9 MΩ	100 kΩ		50 kΩ 999 kΩ 1.00 MΩ 99.9 MΩ	$\begin{array}{c} U_N = 100 \text{ V} \\ I_N = 1 \text{ mA} \end{array}$	$k\Omega$ range $\pm (15\% \text{ rdg.l} + 10\text{d})$	$k\Omega$ range $\pm (13\% \text{ rdg.l} + 10\text{d})$							
R _{ISO}	R _{INS} , R _{E INS}	$\begin{array}{c} 1 \text{ k}\Omega \dots 999 \text{ k}\Omega \\ 1.00 \text{ M}\Omega \dots 9.99 \text{ M}\Omega \\ 10.0 \text{ M}\Omega \dots 99.9 \text{ M}\Omega \\ 100 \text{ M}\Omega \dots 200 \text{ M}\Omega \end{array}$		$I_K = 1.5 \text{ mA}$	50 kΩ 999 kΩ 1.00 MΩ 200 MΩ	$\begin{array}{c} U_{N}=250 \text{ V} \\ I_{N}=1 \text{ mA} \end{array}$	MΩ range ±(I5% rdg.I+1d)	$MΩ$ range \pm (l3% rdg.l+1d)	•	•					
		1 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 99.9 MΩ 100 MΩ 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ		50 kΩ 999 kΩ 1.00 MΩ 499 MΩ	$\begin{array}{c} U_{N} = 325 \text{ V,} \\ U_{N} = 500 \text{ V,} \\ U_{N} = 1000 \text{ V} \\ I_{N} = 1 \text{ mA} \end{array}$									
	U	10 V 999 V 1.00 kV 1.19 kV	1 V 10 V		10 kV 1.19 kV		±(l3% rdg.l+1d)	±(l1.5% rdg.l+1d)							
R _{LO}	R _{LO}	$0.00 \Omega \dots 9.99 \Omega$ $10.0 \Omega \dots 99.9 \Omega$ $100 \Omega \dots 199 \Omega$	0.01 Ω 0.1 Ω 1 Ω	I ≥ 200 mA DC I < 260 mA DC	0.10 Ω 5.99 Ω 6.00 Ω 99.9 Ω	U ₀ = 4.5 V	±(I4% rdg.I+2d)	±(I2% rdg.I+2d)		•					
	Roffset	0.00 Ω 9.99 Ω	0.01 Ω	I ≥ 200 mA DC I < 260 mA DC											
				Transforma- tion ratio ³			5	5							
		0.0 mA 99.9 mA 100 mA 999 mA 1.00 A 9.99 A 10.0 A 15.0 A	0.1 mA 1 mA 0.01 A 0.1 A	1 V/A	5 A 15 A	f _N = 50 Hz, 60 Hz	±(I13% rdg.l+5d) ±(I13% rdg.l+1d)	±(I5% rdg.I+4d) ±(I5% rdg.I+1d)				I 15A			
		1.00 A 9.99 A 10.0 A 99.9 A 100 A 150 A	0.01 A 0.1 A 1 A	0.1 mV/A	5 A 150 A	- N - 00 NE, 00 NE	±(l11% rdg.l+4d) ±(l11% rdg.l+1d)	±(I4% rdg.I+3d) ±(I4% rdg.I+1d)				II 150 A			
		0.0 mA 99.9 mA 100 mA 999 mA	0.1 mA 1 mA	1 V/A	5 mA 1000 mA		\pm (I7% rdg.I+2d) \pm (I7% rdg.I+1d)	\pm (I5% rdg.I+2d) \pm (I5% rdg.I+1d)					1 A		
		0.00 A 9.99 A 0.00 A 9.99 A 10.0 A 99.9 A	0.01 A 0.01 A 0.1 A	100 mV/A 10 mV/A	0.05 A 10 A 0.5 A 100 A	f _N = 16.7 Hz, 50 Hz, 60Hz, 200 Hz,	\pm (3.4% rdg. +2d) \pm (3.1% rdg. +2d) \pm (3.1% rdg. +1d)	±(I3% rdg.I+2d)					10 A 100 A		
	$I_{L/Amp}$	0.00 A 9.99 A 10.0 A 99.9 A 100 A 999 A	0.01 A 0.1 A 1 A	0.1 mV/A	5 A 1000 A	400 Hz	\pm (3.1% rdg. +1d) \pm (3.1% rdg. +2d) \pm (3.1% rdg. +1d)	±(l3% rdg.l+2d)					1000 A		
SEN- SOR 6, 7		0.0 mA 99.9 mA 100 mA 999 mA	0.1 mA 1 mA	1 V/A	30 mA 1000 mA	-	±(27% rdg. +100d) ±(27% rdg. +11d)	±(I3% rdg.I+11d)						3 A	
0, 1		0.00 A 9.99 A	0.01 A 0.01 A	100 mV/A	0.3 A 10 A	f _N = 50 Hz, 60 Hz	, ,	±(I3% rdg.I+11d)						30 A	
		0.00 A 9.99 A 10.0 A 99.9 A	0.01 A 0.1 A	10 mV/A	3 A 100 A			±(I3% rdg.I+11d)						300 A	
		0.00 A 9.99 A 10.0 A 99.9 A	0.01 A 0.1 A	10 mV/A	0.5 A 100 A	f _N =	\pm (I5% rdg.I+12d) \pm (I5% rdg.I+2d)	±(I3% rdg.I+2d)							100 A
		0.00 A 9.99 A 10.0 A 99.9 A 100 A 999 A	0.01 A 0.1 A 1 A	0.1 mV/A	5 A 1000 A	DC, 16.7 Hz, 50 Hz, 60 Hz, 200 Hz	±(I5% rdg.I+50d) ±(I5% rdg.I+7d) ±(I5% rdg.I+2d)	±(I3% rdg.I+7d)							1000 A
		0 VA 9 99 VA	1VA												
		1.00 kVA 9.99kVA 10.0 kVA 99.9kVA 100 kVA 999kVA	0,01 kVA 0,1 kVA 1 kVA		U = 0,3 V 600 V U _{Esensor} = 0 V _{TRMS} 1.0 V _{TRMS}		Value calculated	I from $S = U \times I$							
		1.00 MVA 9.99MVA	0,01 MVA		- TRMS TO VIRMS										

U > 230 V with 2 or 3-pole adapter only

in the "Type" menu with the rotary switch in the "SENSOR" position.

Where R_{Eselective}/R_{Etotal} < 100

respective current clamp.. Measuring range of the signal input at the test instrument, U_E: 0 ... 1.0 V_{TRMS} (0 ... 1.4 V_{peak}) AC/DC Input impedance of the signal input at the test instrument: $800 \text{ k}\Omega$

where $f_N < 45 \text{ Hz} => U_N < 500 \text{ V}$

Gossen Metrawatt GmbH

Key: d = digit(s), rdg. = reading (measured value)

^{1 ×} I $_{\Delta N}$ > 300 mA and 2 × I $_{\Delta N}$ > 300 mA and 5 × I $_{\Delta N}$ > 500 mA and I $_{\rm f}$ > 300 mA up to U $_{\rm N}$ ≤ 230 V only! 5 × I $_{\Delta N}$ > 300 mA with U $_{\rm N}$ = 230 V only The transformation ratio selected at the clamp (1/10/100/1000 mV/A) must be set

The specified measuring and intrinsic uncertainties already include those of the

¹⁵ mA test current only applies if the RCD is set for $I_{\Delta N}=30$ mA. Otherwise test current = $1/2 \times I_{\Delta N}$ of the preselected RCD.

PROFITEST MF Series PROFITEST MF XTRA, MF TECH IEC 60364-6, EN 50110-1

Characteristic Values PROFITEST MF XTRA

Company Comp					Input							Con	nection	18		
U U U U U U U U U U		Quantity	Display Range		Impedance /	Measuring range		_					Probe		mp Me [†] Z3512A	ters MFLEX P300
0.94 1.50						0.3 V 600 V ¹	U _N =									
U U U U U U U U U U							120 V,			•	•	•				
U U U U U U U U U U		f						±(I0.2% rdg.I+1d)	\pm (10.1% rdg.1+1d)							
Use	l u i	Ua AG			5 MO	0.3 V 600 V										
More 100 100 100 11		-3 AC					,							-		
		U _{Probe}				1.0 V 600 V							•			
Table Tabl		H. v.				1 0 V 600 V ¹		±(13% rdg.1+5d)	±(l2% rdg.l+5d)							
10 10 10 10 10 10 10 10	\vdash	OL-IN					200112, 100112									
1.00 (2.0, 6.51 k) 0.00 kg 1.00 (1.0 kg - 30 m k + 1.55 1.00 (1.0 kg - 30 m k + 1.5 1.00 (1.0 kg - 30 m k + 1.55 1.00 (1.0 kg - 30 m k + 1.55		$U_I\Delta N$	0 V 70.0 V	0.1 V	$0.3 \times I_{\Delta N}$	5 V 70 V		+l10% rdg.l+1d								
Table					I _{AN} = 10 mA × 1.05											
Fig. 18 18 18 18 18 18 18 1					-21		Un =									
Land					$I_{\Delta N} = 30 \text{ mA} \times 1.05$	Calculated value										
No.		R _E			$I_{\Delta N} = 100 \text{ mA} \times 1.05$		230 V,									
1.N					$I_{\Delta N}$ =300 mA × 1.05	$H_E = U_{I\Delta N} / I_{\Delta N}$	400 V -									
No.			$0.2\Omega\ldots9.9\Omega$	0.1 Ω	L=500 mA × 1.05		$f_N = 50 \text{ Hz}, 60 \text{ Hz}$									
Continue	I _{AN}	I (I C A)		1Ω		10 4 70 4	II 05 V 50 V						•			
		$I_F (I_{\Delta N} = 0 \text{ IIIA})$ $I_C (I_{\Delta N} = 10 \text{ mA})$		0.1 mA			$U_L = 25 \text{ V}, 50 \text{ V}$			•	•		option-			
		$I_F (I_{\Delta N} = 30 \text{ mA})$	9.0 mA 39.0 mA		9.0 mA 39.0 mA	9.0 mA 39.0 mA	$I_{\Delta N} =$	+(15% rdg 1+1d)	+(13.5% rdg +2d)				ally			
		$I_F (I_{\Delta N} = 100 \text{ mA})$						±(10 % Tug.1 1 Tu)	±(10.070 rug.112u)							
Limit Lim							,									
Very Normal		$U_{IA}/U_{I}=25 \text{ V}$	0 V 25.0 V			0 V 25.0 V	100 mA,	+ 10% rda +1d								
Table Tab					_		300 mA,	1110701ag.111a	+I9% rdg.I+1d							
L ₁ L ₂ L ₃ L ₄ L ₄							300 IIIA									
Z_LPE		l _A (I _{ΔN} × ∠)	U IIIS TUUU IIIS	I IIIS		0 IIIS 1000 IIIS		±4 ms	±3 ms							
Z_LPE		$t_A (I_{\Delta N} \times 5)$	0 ms 40 ms	1 ms		0 ms 40 ms										
A						0.10.0 0.40.0		. //100/ rdg . 20d)	(IE9/ rdg 20d)							
ZL-PE C D D D D D D D D D		Z _{L-PE} (△ →)		4												
Z_LPE		Z _{L-N}	1.00 12 9.99 12		4.7 A AC	1.00 Ω 9.99 Ω		±(I5% rdg.I+3d)	±(I3% rdg.I+3d)							
Z_LPE LOS 1.00 Ω 9.99 Ω 0.5 A DC, 125 A DC 1.00 Ω 9.99 Ω 1.00 Ω Ω 9.90 Ω 1.00 Ω 9			0 mO 000 mO		37110 17110											
A_PE		Z _{L-PE}														
ZL-N Z-PE	Z _{I-PF}			0.4.4			IN = 50 Hz, 60 Hz	±(110% rug.1+3u)	±(14% Tug.1+3u)							
Companies Com		I _K (Z _{L-PE} —,								•	-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z _{L-N}							Value calcula	ted from Z _{L-PE}		∠L-PE					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DC ⁸						(1400/ 1 1 40 1)	//00/ 0 0							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Z _{L-PE} (15 mA ⁹)														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					15 m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100 mA 12 A		±(10 / 1 rug.1 1 Zu)	±(11 70 Tug.11 Tu)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _K (15 mA ⁹)	10.0 A 99.9 A		TO THA AC											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	100 A 999 A ¹¹	1 A				$I_K = U_N/Z_L$	PE (15 IIIA°)							
Rest Without Dipole Proble 1.00 Ω 999 Ω 1.Ω 400 mA AC 400 mA AC 10Ω 999 Ω 1.Ω 400 mA AC 40 mA AC 10Ω 999 Ω 1.Ω 10Ω Ω 999 Ω 1.Ω 10Ω Ω 999 Ω 1.Ω 10Ω Ω 999 Ω 1.Ω 15 mA AC 10Ω Ω 999 Ω 1.Ω			0 mΩ 999 mΩ	1 mO	3.7 A AC 4 7 A AC	$0.10 \Omega \dots 0.49 \Omega$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$1.00~\Omega \dots 9.99~\Omega$		3.7 A AC 4.7 A AC											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μιυυσ)				10 Ω 99.9 Ω		. /I100/ rda I . 2d\								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R_{E} (with probe)				100 Ω 999 Ω	IN = OU HZ, 6U HZ	±(l10% rdg.l+3d)	±(I3% rdg.I+3d)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Be as a s				ι kΩ9.99 kΩ		±(I1U% rdg.I+3d)	±(I3% rdg.I+3d)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.1 Ω	15 m/ //				±(I2% rdg.I+2d)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R _E		$100 \Omega \dots 999 \Omega$	1 Ω	13 IIIA AG	100 Ω 999 Ω	$f_N = 50 \text{ Hz}, 60 \text{ Hz}$	±(18% rdg.1+2d)	±(l1% rdg.l+1d)	•	•		•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					37440 47440	0.25 0 0.99 0	II. = 120 V 230 V	+(118% rda +30d)	+(16% rdg 1+50d)							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.00 Ω 9.99 Ω	$f_N = 50 \text{ Hz}, 60 \text{ Hz}$	±(I10% rdg.I+3d)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		+ DC ⁸	10.0 22 29.9 12	0.132												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0 V 253 V	1 V	3.7 A AC 4.7 A AC	$R_E = 0.10 \dots 9.99 \Omega$	U _N = 120 V, 230 V f _N = 50 Hz, 60 Hz	Calculated U _E =	$= U_N \times R_E/R_{E.PE}$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R _{E and}														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$0.25~\Omega~\dots~300~\Omega~^4$	$U_N = 120 \text{ V}, 230 \text{ V}$ $f_N = 50 \text{ Hz} 60 \text{ Hz}$	±(l20% rdg.l+20 d)	±(I15% rdg.I+20 d)						•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K _E	(only with probe)	$100\Omega\dots999\Omega$				-1N 50 112, 00 112									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		R _{E.sel}			27110 47110	0.25.0	II 100 V 000 V									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+ DC ⁸				$R_{\rm F tot} < 10 \Omega^4$	$f_{NI} = 120 \text{ V}, 230 \text{ V}$ $f_{NI} = 50 \text{ Hz}, 60 \text{ Hz}$	±(l22% rdg.l+20 d)	±(I15% rdg.I+20 d)							
FYTPA 7. 200 kΩ 999 kΩ 1 kΩ 2.3 mA at 230 V 200 kΩ 999 kΩ		(only with probe)	$100\Omega\dots999\Omega$	1 Ω		Entot	14									
				-				±(l20% rdg.l+2d)	±(I10% rdg.I+3d)							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EXTRA	Z_{ST}			2.3 mA at 230 V		$U_0 = U_{L\text{-}N}$	±(I10% rdg.I+2d)	±(15% rdg.1+3d)	•	•	•	•			
$10.0 \text{M}\Omega \dots 30.0 \text{M}\Omega$ $0.1 \text{M}\Omega$ $10.0 \text{M}\Omega \dots 30.0 \text{M}\Omega$								3/								

IEC 60364-6, EN 50110-1

Characteristic Values PROFITEST MF XTRA

											Con	nectio	ns		
Func-		Display Range	Reso-	Test Current	Measuring range	Nominal	Measuring	Intrinsic	Dlug	2-Pole	3-pole	Clam	ıps / M	eas. Ra	anges
tion	Quantity	Diopiny mango	lution	root ourront	mousumg range	Values	Uncertainty	Uncertainty	Plug Insert 1	Adapter	adapter	WZ12C	Z3512A	MFLEX	CP1100
EXTRA	IMD Test	20 kΩ 648 kΩ 2.51 MΩ	1 kΩ 0.01 MΩ	IT line voltage U _N = 90 550 V	20 kΩ 199 kΩ 200 kΩ 648 kΩ 2.51 MΩ	IT system nominal voltages U _N = 120 V, 230 V, 400 V, 500 V	± 7% ± 12% ± 3%	± 5% ± 10% ± 2%	•		•			P300	
		1 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 49.9 MΩ			50 kΩ 999 kΩ 1.00 MΩ 49.9 MΩ	$I_{N} = 50 \text{ Hz}, 60 \text{ Hz}$ $I_{N} = 50 \text{ V}$ $I_{N} = 1 \text{ mA}$									
		1 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 99.9 MΩ	1 kΩ 10 kΩ		50 kΩ 999 kΩ 1.00 MΩ 99.9 MΩ	$\begin{array}{c} U_N = 100 \text{ V} \\ I_N = 1 \text{ mA} \end{array}$	k Ω range	kΩ range							
R _{ISO}	R _{INS} , R _{E INS}	1 kΩ 999 kΩ 1.00 MΩ 9.99 MΩ 10.0 MΩ 99.9 MΩ 100 MΩ 200 MΩ	1 kΩ 10 kΩ	I _K = 1.5 mA	50 kΩ 999 kΩ 1.00 MΩ 200MΩ	$U_{N} = 250 \text{ V}$ $I_{N} = 1 \text{ mA}$	\pm (I5% rdg.I+10d) $M\Omega$ range \pm (I5% rdg.I+1d)	\pm (I3% rdg.I+10d) $M\Omega$ range \pm (I3% rdg.I+1d)	•	•					
		1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ		50 kΩ 999 kΩ 1.00 MΩ 499 MΩ	$\begin{array}{c} U_{N} = 325 \text{ V} \\ U_{N} = 500 \text{ V} \\ U_{N} = 1000 \text{ V} \\ I_{N} = 1 \text{ mA} \end{array}$									
	U	10 V 999 V DC 1.00 kV 1.19 kV	1 V 10 V		10 kV 1.19 kV		±(13% rdg.l+1d)	±(I1.5% rdg.I+1d)							
R _{LO}	R _{LO}	$0.00 \Omega \dots 9.99 \Omega$ $10.0 \Omega \dots 99.9 \Omega$ $100 \Omega \dots 199 \Omega$	0.01 Ω 0.1 Ω 1 Ω	I ≥ 200 mA DC I < 260 mA DC	0.10 Ω 5.99 Ω 6.00 Ω 99.9 Ω	$U_0 = 4.5 \text{ V}$	±(14% rdg.1+2d)	±(I2% rdg.I+2d)							
	Roffset	0.00 Ω 9.99 Ω	0.01 Ω	I ≥ 200 mA DC I < 260 mA DC	$0.10 \Omega 5.99 \Omega$ $6.00 \Omega 99.9 \Omega$		((13 3 3 7							
				Transforma- tion ratio ³			5	5							
		0.0 mA 99.9 mA	0.1 mA	uon ruuo			±(l13% rdg.l+5d)	±(I5% rdg.I+4d)							
		1.00 mA 999 mA 1.00 A 9.99 A 10.0 A 15.0 A	1 mA 0.01 A 0.1 A	1 V/A	5 A 15 A	f _N = 50 Hz, 60 Hz	±(l13% rdg.l+1d)	±(I5% rdg.I+1d)				I 15A			
		1.00 A 9.99 A 10.0 A 99.9 A	0.01 A 0.1 A	0.1 mV/A	5 A 150 A	N	±(l11% rdg.l+4d) ±(l11% rdg.l+1d)	, ,				II 150 A			
		100 A 150 A 0.0 mA 99.9 mA 100 mA 999 mA	1 A 0.1 mA 1 mA	1 V/A	5 mA 1000 mA		±(I7% rdg.I+2d) ±(I7% rdg.I+1d)	±(I5% rdg.I+2d) ±(I5% rdg.I+1d)					1 A		
		0.00 A 9.99 A 0.00 A 9.99 A 10.0 A 99.9 A	0.01 A 0.01 A 0.1 A	100 mV/A 10 mV/A	0.05 A 10 A 0.5 A 100 A		\pm (I3.4% rdg.I+2d) \pm (I3.1% rdg.I+2d) \pm (I3.1% rdg.I+1d)	±(I3% rdg.I+2d)					10 A 100 A		
	$I_{L/Amp}$	0.00 A 99.9 A 10.0 A 99.9 A	0.01 A 0.1 A	0.1 mV/A	5 A 1000 A	400 Hz	\pm (I3.1% rdg.I+1d) \pm (I3.1% rdg.I+2d)	±(I3% rdg.I+1d)					1000 A		
SEN- SOR		100 A 999 A 0.0 mA 99.9 mA 100 mA 999 mA	1 A 0.1 mA 1 mA	1 V/A	30 mA 1000 mA		±(3.1% rdg.l+1d) ±(27% rdg.l+100d) ±(27% rdg.l+11d)	±(13% rdg.l+100d)						3 A	
6, 7		0.00 A 9.99 A	0.01 A 0.01 A	100 mV/A	0.3 A 10 A	f _N = 50 Hz, 60 Hz	±(l27% rdg.l+12d) ±(l27% rdg.l+11d)	±(I3% rdg.I+12d)						30 A	
		0.00 A 9.99 A 10.0 A 99.9 A	0.01 A 0.1 A	10 mV/A	3 A 100 A		\pm (l27% rdg.l+100d) \pm (l27% rdg.l+11d)							300 A	
		0.00 A 9.99 A 10.0 A 99.9 A	0.01 A 0.1 A	10 mV/A	0.5 A 100 A	f _N = DC, 16.7 Hz,	\pm (I5% rdg.I+12d) \pm (I5% rdg.I+2d)	±(I3% rdg.I+2d)							100 A
		0.00 A 9.99 A 10.0 A 99.9 A 100 A 999 A	0.01 A 0.1 A 1 A	0.1 mV/A	5 A 1000 A	50 Hz, 60 Hz, 200 Hz	±(I5% rdg.I+50d) ±(I5% rdg.I+7d) ±(I5% rdg.I+2d)	\pm (I3% rdg.I+50d) \pm (I3% rdg.I+7d) \pm (I3% rdg.I+2d)	-						1000 A
		0 VA 999 VA	1VA												
		1.00 kVA 9.99kVA	0.01 kVA		U = 0,3 V 600 V	U _N = 120 V,									
		10.0 kVA 99.9kVA	0.1 kVA		U _{Esensor} =	230 V, 400 V	Value calculated	I from $S = U \times I$							
		100 kVA 999kVA	1 kVA		0 V _{TRMS} 1.0 V _{TRMS}	$T_N = 50 \text{ Hz}, 60 \text{Hz}$									
		1.00 MVA 9.99MVA	0.01 MVA												

current = $1/2 \times I_{\Delta N}$ of the preselected RCD. 11 where $Z_{L-PE} < 0.6 \ \Omega, \ I_k > U_N/0.5 \ \Omega$ is displayed

Key: d = digit(s), rdg. = reading (measured value)

U > 230 V, with 2 or 3-pole adapter only $1\times I_{\Delta N}$ > 300 mA and $2\times I_{\Delta N}$ > 300 mA and $2\times I_{\Delta N}$ > 300 mA and 1_f > 300 mA only up to U $_N$ \leq 230 V!

The transformation ratio selected at the clamp (1/10/100/1000 mV/A) must be set in the "Type" menu with the rotary switch in the "SENSOR" position.

Where $R_{\rm Eselective}/R_{\rm Etotal} < 100$ The specified measuring and intrinsic uncertainties already include those of the respective current clamp.

Measuring range of the signal input at the test instrument, U_E : 0 ... 1.0 V_{eff}

where $f_N < 45$ Hz => $U_N < 500$ V the RCD is set for $I_{\Delta N} = 30$ mA. Otherwise test

PROFITEST MF Series PROFITEST MF XTRA, MF TECH IEC 60364-6, EN 50110-1

Characteristic Values Special Measurements PROFITEST MF XTRA

				Test Current /					Connect	ions	
Func- tion	Measured	Display Range	Reso- lution	Signal	Measuring range	Measuring	Intrinsic Uncertainty	Adapter fo	r Test Plug	Current	Clamps
LIOII	Quantity		lution	Frequency 1		Uncertainty	Unicertainty	PRO-RE	PRO-RE/2	Z3512A	Z591B
	RE, 3-pole	$0.00 \Omega \dots 9.99 \Omega$ $10.0 \Omega \dots 99.9 \Omega$	0.01 Ω 0.1 Ω	16 mA/128 Hz 1.6 mA/128 Hz	$1.00 \Omega 19.9 \Omega$ $5.0 \Omega 199 \Omega$	\pm (l10% rdg.l+10d + 1 Ω)	\pm (l3% rdg.l+5d + 0.5 Ω)	2			
	RE, 4-pole	$100 \Omega \dots 999 \Omega$ $1.00 k\Omega \dots 9.99 k\Omega$ $10.0 k\Omega \dots 50.0 k\Omega$		0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz	$50 \Omega \dots 1.99 k\Omega$ $0.50k\Omega \dots 19.9k\Omega$ $0.50k\Omega \dots 49.9k\Omega$	±(I10% rdg.I+10d)	±(l3% rdg.l+5d)	۲			
RE _{BAT}	RE, 4-pole selective with clamp meter	$\begin{array}{c} 0.00\Omega\dots9.99\Omega\\ 10.0\Omega\dots99.9\Omega\\ 100\Omega\dots999\Omega\\ 1.00\mathrm{k}\Omega\dots999\mathrm{k}\Omega\\ 1.00\mathrm{k}\Omega\dots9.99\mathrm{k}\Omega\\ 10.0\mathrm{k}\Omega\dots19.9\mathrm{k}\Omega^{10}\\ 10.0\mathrm{k}\Omega\dots49.9\mathrm{k}\Omega^{11} \end{array}$	0.1 kΩ	16 mA/128 Hz 16 mA/128 Hz 1.6 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz	1.00 Ω 9.99 Ω 10.0 Ω 200 Ω	±(l15% rdg.l+10d) ±(l20% rdg.l+10d)	±(l10% rdg.l+10d) ±(l15% rdg.l+10d)	2		5	
DAI	Soil resistivity (p)	$\begin{array}{c} 0.0 \; \Omega \text{m} \; \dots \; 9.9 \; \Omega \text{m} \\ 100 \; \Omega \text{m} \; \dots \; 999 \; \Omega \text{m} \\ 1.00 \; \Omega \text{m} \; \dots \; 9.99 \; k \Omega \text{m} \end{array}$		16 mA/128 Hz 1.6 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz	$\begin{array}{l} 100 \ \Omega \text{m} \ \dots 9.99 \ k\Omega \text{m}^{ 8} \\ 500 \ \Omega \text{m} \ \dots 9.99 \ k\Omega \text{m}^{ 8} \\ 5.00 \ k\Omega \text{m} \ \dots 9.99 \ k\Omega \text{m}^{ 9} \\ 5.00 \ k\Omega \text{m} \ \dots 9.99 \ k\Omega \text{m}^{ 9} \\ 5.00 \ k\Omega \text{m} \ \dots 9.99 \ k\Omega \text{m}^{ 9} \end{array}$	±(l20% rdg.l+10d)	±(l12% rdg.l+10d)	2			
	Probe clearance d (p)	0.1 m 999 m									
	RE, 2 clamps	$0.00 \Omega \dots 9.99 \Omega$ $10.0 \Omega \dots 99.9 \Omega$ $100 \Omega \dots 999 \Omega$ $1.00 \Omega \dots 1.99 k\Omega$	0.01 Ω 0.1 Ω 1 Ω 0.01 kΩ	30 V / 128 Hz	0.10 Ω 9.99 Ω 10.0 Ω 99.9 Ω	±(l10% rdg.l+5d) ±(l20% rdg.l+5d)	±(I5% rdg.l+5d) ±(I12% rdg.l+5d)		3	5	4

Key: d = digit(s), rdg. = reading (measured value)

Signal frequency without interference signal PRO-RE (Z501S) adapter cable for test plug, for connecting earth probes (E-Set 3/4)

PRO-RE/2 adapter cable for test plug, for connecting the E-CLIP2 generator clamp Generator clamp: E-CLIP2 (Z591B) Clamp meter: Z3512A (Z225A)

Where R_{E.sel}/R_E < 10 or clamp meter current > 500 μ A Where R_{E.H}//R_E ≤ 100 and R_{E.E}/R_E ≤ 100 Where d = 20 m

 $^{^9}$ Where d = 2 m 10 Only where RANGE = 20 $k\Omega$ 11 Only where RANGE = 50 $k\Omega$ or AUTO

IEC 60364-6, EN 50110-1

Reference Conditions

Measured qty. waveform Sine (deviation between effective and

rectified value ≤ 0.1 %)

 $\begin{array}{ll} \text{Line impedance angle} & \cos \phi = 1 \\ \text{Probe resistance} & \leq 10 \ \Omega \\ \text{Supply voltage} & 12 \ \text{V} \pm 0.5 \ \text{V} \\ \text{Ambient temperature} & + 23 \ ^{\circ}\text{C} \pm 2 \ \text{K} \\ \text{Relative humidity} & 40\% \dots 60\% \\ \end{array}$

Finger contact For testing potential difference

to ground potential

Standing surface

insulation Purely ohmic

R_{LO} Electronic protection prevents switching on if interference voltage is present.

Protection with

fine-wire fuses FF 3.15 A 10 s, Fuses blow at > 5 A

Electrical Safety

Protection class I

Nominal voltage 230/400 V (300/500 V)

Test voltage 3.7 kV, 50 Hz

Measuring category CAT III 600 V or CAT IV 300 V

Pollution degree

Fuses

L and N terminals 1 fuse link ea.

FF 3.15 A/500G 6.3 mm × 32 mm

Power Supply

(Rechargeable) batteries 8 each AA 1.5 V

We recommend using the included battery pack only (2000 mAh; Z502H) or the optionally available battery pack

(2500 mAh; Z502O)

Number of measurements (standard setup)

- For R_{INS} 1 measurement - 25 s pause:

approx. 1100 (Z502H) or 810 (Z502O)

measurements

– for R_{LO} Auto polarity reversal / 1 Ω

(1 measuring cycle) – 25 s pause: approx. 1000 (Z502H) or 970 (Z502O)

measurements

Battery test Symbolic display of rechargeable bat-

tery voltage BAT

Battery-saving circuit Display illumination can be switched off.

The test instrument is switched off automatically after the last key operation. The user can select the desired

on-time.

Safety shutdown If supply voltage is too low, the instru-

ment is switched off, or cannot be

switched on.

Recharging socket Inserted rechargeable batteries can be

recharged directly by connecting a charger to the recharging socket:

Z502R charger

Charging time Z502R charger:

approx. 3 hours *

* Maximum charging time with fully depleted batteries. A timer in the charger limits charging time to no more than 4 hours.

Electromagnetic Compatibility (EMC)

Product standard EN 61326-1

i roddot otdriddid	LI 1 0 1 0 2 0 1	
Interference emission		Class
EN 55022		Α
Interference immunity	Test value	Feature
EN 61000-4-2	Contact/atmos. – 4 kV/8 kV	
EN 61000-4-3	10 V/m	
EN 61000-4-4	Mains connection – 2 kV	
EN 61000-4-5	Mains connection – 1 kV	
EN 61000-4-6	Mains connection – 3 V	
EN 61000-4-11	0.5 periods / 100%	

Ambient Conditions

Accuracy $0 \dots + 40 \,^{\circ}\text{C}$ Operation $-5 \dots + 50 \,^{\circ}\text{C}$

Storage -20 ... + 60 °C (without batteries)
Relative humidity max. 75%, no condensation allowed

Elevation max. 2000 m

Mechanical Design

 $\begin{array}{ll} \mbox{Display} & \mbox{high resolution color display} \\ \mbox{Dimensions} & \mbox{W} \times \mbox{L} \times \mbox{H} = 260 \times 330 \times 90 \mbox{ mm} \\ \mbox{Weight} & \mbox{Approx. 2.7 kg with batteries} \\ \mbox{Protection} & \mbox{Housing: IP 40, test probe: IP 20} \\ \end{array}$

per EN 60529

Overload capacity

 $\begin{array}{ll} R_{ISO} & 1200 \text{ V continuous} \\ U_{L\text{-PE}}, \, U_{L\text{-N}} & 600 \text{ V continuous} \\ \text{RCD}, \, R_{\text{E}}, \, R_{\text{E}} & 440 \text{ V continuous} \end{array}$

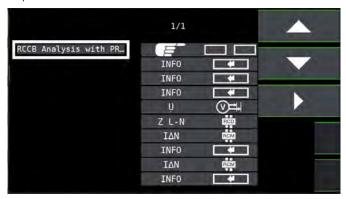
 Z_{L-PE} , Z_{L-N} 550 V (Limits the number of measure-

ments and pause duration. If overload occurs, the instrument is switched off by means of a thermostatic switch.)

Data Interfaces

Type USB type B for PC connection

Type USB type A for connection of a USB keyboard,


barcode or RFID scanner

IEC 60364-6, EN 50110-1

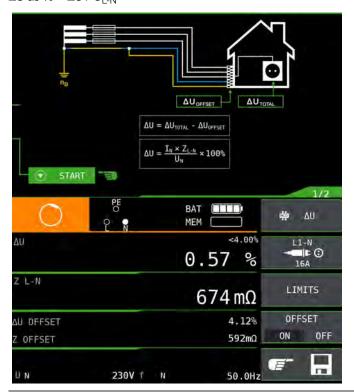
Special Measurements (all types)

Automatic test sequence function

If the same sequence of tests will be run frequently (one after the other with subsequent report generation), for example as specified in the standards, it's advisable to make use of test sequences.

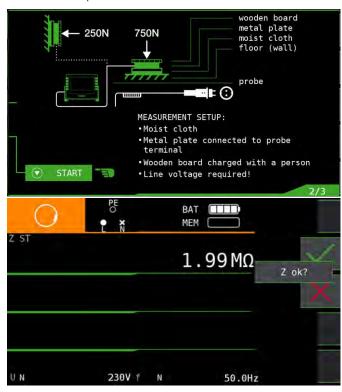
Automated test sequences can be compiled from manually created individual measurements with the help of the test sequence function. A test sequence consists of up to 200 individual steps, which are executed one after the other.

The test sequences are created at the PC with the help of IZY-TRONIQ software, and then transferred to the test instrument.

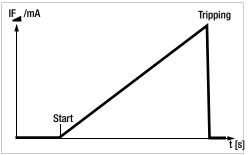

Measurement parameters are also configured at the PC. However, parameters can be changed at the test instrument during the test sequence before the respective measurement is started.

Voltage drop measurement (at Z_{LN}) – ΔU function

According to IEC 60364-6, voltage drop from the intersection of the distribution network and the consumer system to the point of connection of an electrical power consumer (electrical outlet or device connector terminals) should not exceed 4% of nominal line voltage.


Voltage drop calculation:

 $\Delta U = Z_{L-N} \times$ nominal current of the fuse ΔU as $\% = \Delta U / U_{L-N}$



Measurement of the Impedance of Insulating Floors and Walls (standing surface insulation impedance) – Z_{ST} Function

The instrument measures the impedance between a weighted metal plate and earth. Line voltage available at the measuring site is used as an alternating voltage source. The $Z_{\rm ST}$ equivalent circuit is considered a parallel circuit.

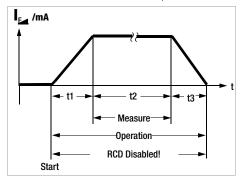
Tripping Test for Type B, AC/DC Sensitive RCDs with Rising DC Residual Current and Measurement of Tripping Current

With the selector switch in the IF position, slowly rising DC current flows via N and PE. The momentary measured current value is continuously displayed. When the RCCB is

tripped, the last measured current value is displayed. A greatly reduced rate of increase is used for delayed RCCBs (type §).

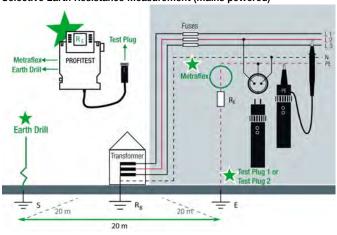
Tripping Test for Type B, AC/DC Sensitive RCDs with Constant DC Residual Current and Measurement of Tripping Time

With the selector switch set to the respective nominal residual current, twice the selected nominal current flows via N and PE. Time to trip is measured for the RCCB and displayed.


IEC 60364-6, EN 50110-1

Loop Resistance Measurement with Suppression of RCD Tripping

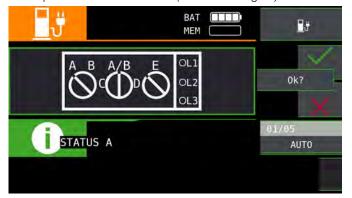
The test instruments make it possible to measure loop impedance in TN systems with type A, F ☒ and AC RCCBs ☒ (10, 30, 100, 300, 500 mA nominal residual current).


The respective test instrument generates a DC residual current to this end, which saturates the RCCB's magnetic circuit.

The test instrument then superimposes a measuring current which only demonstrates half-waves of like polarity. The RCCB is no longer

capable of detecting this measuring current and is consequently not tripped during measurement.

Selective Earth Resistance Measurement (mains powered)



Checking the operating states of an electric vehicle at charging stations per IEC 61851-1

In combination with an adapter, the operating state of an electric vehicle can be tested at charging points in accordance with IEC 61851-1. The adapter is used to simulate the various operating states of a fictitious electric vehicle connected to a charging station.

Example: MENNEKES test box (states A through E)

Special Measurements PROFITEST MF XTRA

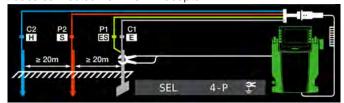
Battery Powered Earthing Resistance Measurements, "Battery Mode"

Earthing Resistance R_F


3-wire measuring method,

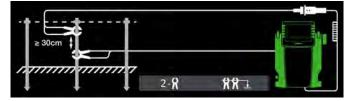
probes and earth electrodes connected via PRO-RE adapter

4-wire measuring method,

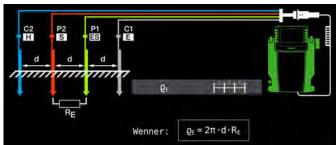

probes and earth electrodes connected via PRO-RE adapter

Selective Earthing Resistance R_F

(4-wire measuring method)

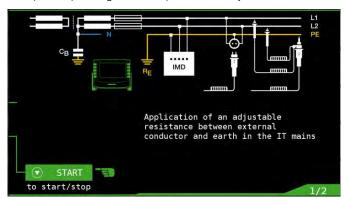

Current clamp sensor connected directly, probes and earth electrodes connected via PRO-RE adapter

Earth Loop Resistance R_{Eloop}


2-clamp measurement:

Current clamp sensor directly connected, current clamp transformer connected via PRO-RE/2 adapter

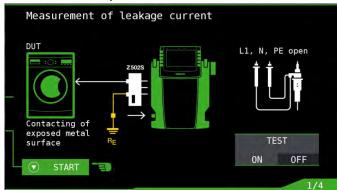
Soil Resistivity Rho


Probes connected via PRO-RE

IEC 60364-6, EN 50110-1

Testing of insulation monitoring devices (IMDs)

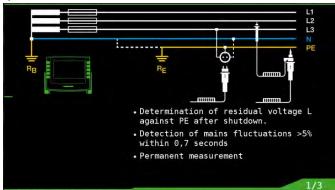
Insulation monitors are used in power supplies for which a singlepole earth fault may not result in failure of the power supply, for example in operating rooms or photovoltaic systems.


Insulation monitors can be tested with the help of this special function. After pressing the START button, an adjustable insulation resistance is activated between one of the two phases of the IT system to be monitored and ground to this end. This resistance can be changed in the manual sequence mode with the help of the softkeys, and it can be varied automatically from R_{max} to R_{min} in the automatic operating mode.

Time during which the momentary resistance value prevails at the system until the next change in value is displayed. The IMD's display and response characteristics can be subsequently evaluated and documented with the help of the softkeys.

Leakage current measurement with PRO-AB adapter

Measurement of continuous leakage and patient auxiliary current per IEC 62353 / IEC 601-1 / EN 60 601-1 (Medical electrical equipment – General requirements for basic safety) is possible with the help of the PRO-AB leakage current measuring adapter used as an accessory with the test instrument.


As specified in the standards listed above, current values of up to 10 mA can be measured with this measuring adapter.

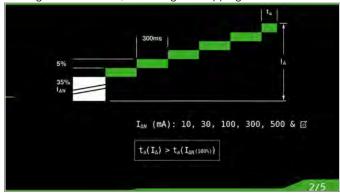
In order to be able to fully cover this measuring range using the measurement input provided on the test instrument (2-pole current clamp input), the measuring instrument is equipped with range switching including transformation ratios of 10:1 and 1:1.

Determination of Residual Voltage / Detection of Mains Fluctuation

EN 60204 specifies that after switching supply power off, residual voltage between L and PE must drop to a value of 60 V or less within 5 seconds at all accessible, active components of a machine to which a voltage of greater that 60 V is applied during operation.

With the PROFITEST MF XTRA, testing for the absence of voltage is performed as follows by means of a voltage measurement which involves measuring discharge time tu:

In the case of voltage dips of greater than 5% of momentary line voltage (within 0.7 seconds), the stopwatch is started and momentary undervoltage is displayed as Ures after 5 seconds and indicated by the red $U_1/R_{\rm I}\,$ diode.



IEC 60364-6, EN 50110-1

Intelligent Ramp

The advantage of this measuring function in contrast to individual measurement of $I_{\Delta N}$ and t_A is the simultaneous measurement of breaking time and breaking current by means of a test current which is increased in steps, during which the RCD has to be tripped only once.

The intelligent ramp is subdivided into time segments of 300 ms each between the initial current value (35 % $I_{\Delta N}$) and the final current value (130 % $I_{\Delta N}$). This results in a gradation for which each step corresponds to a constant test current which is applied for no longer than 300 ms, assuming that tripping does not occur.

And thus both tripping current and tripping time are measured and displayed.

Testing Residual Current Monitoring Devices (RCMs)

Residual current monitors (RCMs) monitor residual current in electrical systems and display it continuously. As is also the case with residual current devices, external switching devices can be controlled in order to shut down supply power in the event that a specified residual current value is exceeded. However, the advantage of an RCM is that the user is informed of fault current within the system before shutdown takes place.

As opposed to individual measurement of $I_{\Delta N}$ and t_A , measurement results must be evaluated manually in this case

If an RCM is used in combination with an external switching device, the combination must be tested as if it were an RCD.

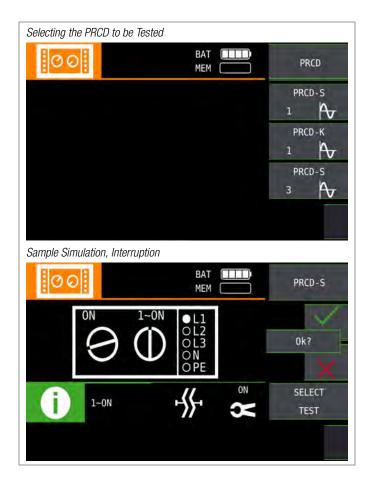
Test Sequences for Documenting Fault Simulations at type S and K PRCDs with the Optional PROFITEST PRCD Adapter

- There are three preset test sequences:
 - PRCD-S (single-phase)
 - PRCD-K (single-phase)
 - PRCD-S (3-phase)

3-phase PRCDs:

 The test instrument runs through all test steps semi-automatically:

Single-phase PRCDs: PRCD-S: 11 test steps


PRCD-K: 4 test steps PRCD-S: 18 test steps

- Each test step is evaluated and assessed by the user (go/no-go) for later documentation.
- Measurement of the PRCD's protective conductor resistance using the test instrument's R_{LO} function
- Measurement of the PRCD's insulation resistance using the test instrument's R_{ISO} function
- Measurement of time to trip using the test instrument's $I_{\Delta N}$ function.
- Varistor test for PRCD-K: measurement via ISO ramp

Further information is available in the data sheet for the PROFITEST PRCD.

IEC 60364-6, EN 50110-1

IEC 60364-6, EN 50110-1

Accessories

Report Generating Accessories

See also separate "ID systems" data sheet.

Barcode Scanner (Z751A)

Barcode scanner for the identification of systems, electrical circuits and equipment.

Connection to the test instrument and power supply via USB.

Supported barcodes: EAN13, CODE 39, CODE 128 and 2D-Codes (QR-Codes).

Barcode and Label Printer for USB Connection to a PC (Z721E)

Barcode/label printer for connection to a PC for self-adhesive, smudge-proof barcode labels – for identifying devices and system components. Devices and system components can be logged by our test instruments, and acquired measured values can be allocated to them with the scanner.

RFID scanner and writer SCANBASE RFID (Z751E)

The SCANBASE RFID is used to identify tools and equipment: The RFID reader scans the code and forwards it to our test instruments in order to unequivocally assign the measured values and test results to a device under test.

ID numbers for RFID tags can be created at a PC.

Connection to the test instrument and power supply is via USB.

Article no.	Frequency	Standard	Layout	Quantity per Package
Z751R	13.56 MHz	ISO 15693	Dia. approx. 22 mm, self-adhesive	500 pieces
Z751S	13.56 MHz	ISO 15693	Dia. approx. 30×2 mm with 3 mm hole	500 pieces
Z751T	13.56 MHz	ISO 15693	Pigeon ring, dia. approx. 10 mm	250 pieces

Power Supply Accessories

Master Battery Pack (Z502H) PROFITEST Battery Pack (Z5020)

Accessory Plug Inserts and Adapters

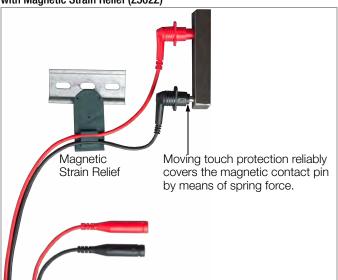
PRO-HB Test Probe and Measuring Adapter Holder (Z501V)

Country-Specific Plug Inserts

- •PRO-Schuko (GTZ3228000R0001) for Germany: earth contact plug
- •PRO-W (Z503A) for Germany: angled earth contact plug
- •PRO-W II (Z503V) for Germany: angled earth contact plug with PE socket
- •PRO-GB/USA (Z503B)
- •PRO-CH (GTZ3225000R0001)

Test Tips, Probe Set (Z503F) Length 68 mm, dia. 2.3 mm

PRO-PE Clip - Flat Test Clip for Busbars (Z503G)



Gossen Metrawatt GmbH

Charger (Z502R)

IEC 60364-6, EN 50110-1

Magnetic Measuring Probes (patented) with Magnetic Strain Relief (Z502Z)

Safety Clip (Z503W)

Plug Inserts for PE and Other Similar Measurements

With 4-wire technology CAT IV, 300 V

- •PRO-RLO-II (Z501P) Cable length: 10 m
- •PRO-RLO 20 (Z505F) Cable length: 20 m
- •PRO-RLO 50 (Z505G) Cable length: 50 m

PRO-UNI-II Plug Insert (Z501R)

3 connector cables for any connection standards CAT IV, 300 V

5-pole 3-phase adapter

3-phase adapters

- •A3-16 (GTZ3602000R0001)
- •A3-32 (GTZ3603000R0001) and
- •A3-63 (GTZ3604000R0001)

permit trouble-free connection of test instruments to 5-pole CEE outlets The three variants differ with regard to plug size, which

corresponds respectively to 5-pole CEE outlets with current ratings of 16, 32 and 63 A. Phase sequence is indicated with lamps at all three variants. Testing the effectiveness of safety measures is conducted via five 4 mm sockets with touch protection.

7-pole 3-phase adapter

Shielded A3-16 and A3-32 three-phase adapters are used for trouble-free connection of test instruments to 7-pole CEE outlets.

The two variants differ with regard to plug size, which corresponds respectively to 7-pole CEE outlets with current ratings of 16 and 32 A.

Testing the effectiveness of safety measures is conducted via seven 4 mm sockets with touch protection.

VARIO Plug Adapter Set (Z500A)

Three self-retaining test probes with touch protection for the connection of measurement cables with 4 mm banana plugs, or with touch protected plugs for sockets with an opening of 3.5 mm to 12 mm, e.g. CEE or Perilex sockets etc.

For example, the test probes also fit the square PE jacks on Perilex sockets. Maximum allowable operating voltage: 600 V per IEC 61010.

IEC 60364-6, EN 50110-1

PRO-AB Leakage Current Measuring Adapter (Z502S) for PROFITEST MF XTRA

Input current: $0 \dots 10 \text{ mA}$ Input impedance: $1 \text{ k}\Omega \pm 0.5\%$ Output voltage:

 $\begin{array}{lll} \mbox{10:1:} & 0 \ ... \ 1 \ V \ (\mbox{0.1 V/mA}) \\ \mbox{1:1:} & 0 \ ... \ 10 \ V \ (\mbox{1 V/mA}) \\ \mbox{Output impedance } 10 \ k\Omega \end{array}$

ISO Calibrator 1 (M662A)

Calibration adapter for rapid, efficient testing of the accuracy of measuring instruments for insulation resistance and low-value resistors

KS24 Cable Set (GTZ3201000R0001)

The KS24 cable set includes a 4 m long extension cord with a permanently attached test probe at one end and a contact protected socket at the other end, as well as an alligator clip which can be plugged onto the test probe.

Telescoping Rods TELEARM 120 (Z505C) and TELEARM 180 (Z505D)

TELEARM Case (Z505E)

1081 Floor Probe (GTZ3196000R0001)

The 1081 floor probe makes it possible to measure the resistance of insulating floors in accordance with IEC 60364-6 and EN 1081.

Current Clamp Sensor WZ12C (Z219C)

Current clamp sensor for leakage current, selectable measuring ranges: 1 mA ... 15 A, 3% and 1 A ... 150 A, 2% Transformation ratios: 1 mV/mA, 1 mV/A

METRAFLEX P300 (Z502E)

Flexible current clamp sensor for selective earthing resistance measurement 3/30/300 A, 1 V/100 mV/10 mV/A

Earth Measurement Accessories

PRO-RE/2 Clamp Adapter (Z502T)

Adapter which is mounted to the test plug allowing for connection of the E-Clip 2 generator clamp for 2-clamp or ground-loop earthing resistance measurement.

2-clamp or ground loop measurement is thus made possible

PRO-RE Adapter (Z501S)

Earth electrodes, auxiliary earth electrodes, probe and auxiliary probe are connected to the tester via the banana plug sockets, and thus via the adapter which is mounted to the test plug.

E- CLIP 2 Clamp Generator (Z591B)

Measuring range:
0.2 A ... 1200 A
Measuring category:
600 V CAT III
Max. cable diameter: 52 mm

Transformation ratio: 1000A/1A Frequency range: 40 Hz ... 5 kHz

Output signal: 0.2 mA ... 1.2 A Equipped with laboratory safety plug inputs

AC Current Clamp Sensor (Z3512A)

Switchable measuring ranges: 1 mA... 1/100/ 1000 A AC

Transmission ratios:
1 V/A, 100 mV/A,
10 mV/A; 1 mV/A

IEC 60364-6, EN 50110-1

TR25II Cable Reel (Z503X)

25 m measurement cable coiled onto a plastic reel. Connection to the inside end of the cable is made possible with two sockets integrated into the reel. The other end is equipped with a banana plug.

Cable resistance can be compensated for with the rotary selector switch in the R_{LO} position.

E-SET BASIC (Z593A)

TR50II Cable Reel (Z503Y)

50 m measurement cable coiled onto a plastic reel. Connection to the inside end of the cable is made possible with two sockets integrated into the reel. The other end is equipped with a banana plug.

Cable resistance can be compensated for with the rotary selector switch in the $R_{I,O}$ position.

Device Protection

PROTECTIVE BUMPER

Rubber side elements to protect the test instrument:

- 2 × red (Z505H)
- 2 × blue (Z505K)
- 2 × pink (Z505N)
- 2 × green (Z505M)
- 2 × yellow (Z505L)
- 2 × orange (Z505R)

Set 1 (1× yellow for test probe side / 1 × red for measuring adapter side) (Z505O)

Set 2 (1 \times green for test probe side / 1 \times pink for measuring adapter side) (Z505P)

SP500 Earth Drill (Z503Z)

E-SET PROFESSIONAL (Z592Z)

Accessory Cases, Trolleys and Pouches

SORTIMO L-BOXX GM (Z503D)

Plastic system case, outside dimensions: $W \times H \times D$ $450 \times 255 \times 355$ mm

Z503E foam insert for test instrument and accessories must be ordered separately (see below).

Foam Insert for SORTIMO L-BOXX GM (Z503E)

IEC 60364-6, EN 50110-1

Profi-Case (Z502W)

Outside dimensions: $H \times W \times D$ 390 \times 590 \times 230 mm

E-CHECK Case (Z502M)

Outside dimensions: $H \times W \times D$ 390 \times 590 \times 230 mm

Sample Content

F2000 Universal Carrying Pouch (Z700D)

Outside dimensions: $W \times H \times D$ 380 \times 310 \times 200 mm (without buckles, handle or carrying strap)

PROFITEST MASTER Ever-Ready Case (Z502X)

with external pockets for accessories

Trolley for Profi-Case (Z502W) and E-CHECK Case (Z502N)

Folded delivery dimensions: $395 \times 150 \times 375$ mm

F2020 Large Universal Carrying Pouch (Z700F)

Outside dimensions: $W \times H \times D$ 430 × 310 × 300 mm (without buckles, handle or carrying strap)

IEC 60364-6, EN 50110-1

E-Mobility Accessories

PROFITEST EMOBILITY (M513R)

Adapter for standards-compliant testing of single and 3-phase, mode 2 and 3 charging cables with simulation of faults in accordance with EN 50678 / DIN EN 50699 and the manufacturer's specifications

- •Testing of mode 2 and 3, single and 3-phase charging cables
- •Function test, i.e. tripping test by means of simulating the following faults: interruption, reversed wires and PE to phase
- •Measurement of protective conductor current with current clamp transformer as accessory
- Measurement of protective conductor and insulation resistance
- •Tripping test with nominal resid-

ual current and measurement of time to trip

Evaluation and documentation of individual test steps

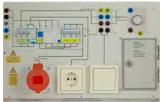
Test Adapter for Electric Charging Points (single/3-phase, type 2)

Single and 3-phase test adapter with type 2 plug for testing the effectiveness of protective measures at electric charging points:

- METRALINE PRO-TYP EM I (Z525F)
- METRALINE PRO-TYP EM II (Z525G): with earthing contact socket
- Vehicle simulation (CP):
 Vehicle states A through E are selected with a rotary switch.
- Cable simulation (PP):

The various codings for charging cables with 13, 20, 32 and 63 A, as well as "no cable connected", can be simulated with the help of a rotary switch.

- Fault simulation:
 - Simulation of a short-circuit between CP and PE by means of a rotary switch
- Indication of phase voltages via LEDs:
 Depending on the charging station, either one or three phases can be active.
- Testing of electric charging stations with permanently attached charging cable by means of an extended CP test pin


Fault Simulation Accessories

PROFSIM 1 (M560A)

PROFSIM 2 (M560B)

Installation board with option for fault simulation for measurements per IEC 60364-6 and EN 50110 for training and project work.

M560A

Service line with main grounding busbar, external and internal lightning protection, earth measurements, TN/TT systems

M560B

Sub-distribution branch with installation circuits, RCD type B, RCBO (FI/LS)

Further information regarding accessories can be found:

- in our Measuring Instruments and Testers catalog
- on the Internet at www.gossenmetrawatt.com

IEC 60364-6, EN 50110-1

Scope of Delivery

Standard equipment of the PROFITEST MF series:

- 1 Test instrument
- Earthing contact plug insert, country-specific (PRO-SCHUKO / GTZ3228000R0001)
- 1 2-pole measuring adapter and cable for expansion into a 3-pole adapter (PRO-A3-II / Z5010)
- 2 Alligator clips
- 1 Shoulder strap
- 1 Compact battery pack (Z502H)
- 1 Charger (Z502R)
- 1 USB cable
- 1 DAkkS calibration certificate
- 1 Condensed operating instructions *Information on Open Source Software Licenses
- 1 IZYTRONIQ BUSINESS Starter software ** 12 months IZYTRONIQ CLOUD **
- * Set of complete operating instructions available on the Internet for download from www.gossenmetrawatt.com
- ** Download from Internet, registration certificate included

Refer to the order information below for further accessories and instrument sets with additional accessories for specific testing purposes.

Order Information

Test instruments from the PROFITEST MF series can be ordered with the standard scope of delivery (see above) or as instrument sets. Sets consist of the test instrument and extended accessories which are adapted to a specific test purpose.

Refer to the scope of delivery on page 3 with regard to the differences between the instrument variants

Accessories can also be ordered separately. Data sheets are available separately for some products, in which additional information can be found. These are indicated with a $^{\rm D}$ in the table.

Each product is identified with its article number, by means of which it can also be ordered.

Note concerning test instrument article numbers:

The instrument's individual number can be found on the rating plate. This cannot be used for ordering – only the article numbers shown below for instruments with standard scope of delivery or for instrument sets can be used when placing orders.

Test Instruments - Standard Scope of Delivery

1	Designation	Description / Scope of Delivery	Article Number
	PROFITEST MF XTRA	PROFITEST MF XTRA test instrument (M534H) with black PROTECTIVE BUMPER and standard scope of delivery	M535H
	PROFITEST MF XTRA (LEMONGREEN ¹⁾)	PROFITEST MF XTRA (M534Y) test instru- ment with green PROTECTIVE BUMPER (Z505M) and standard scope of delivery and IZYTRONIQ BUSINESS PROFESSIONAL (instead of IZYTRONIQ BUSINESS Starter)	M535T ¹⁾
	PROFITEST MF TECH	PROFITEST MF TECH test instrument (M534K) with black PROTECTIVE BUMPER and standard scope of delivery	M535K
	PROFITEST MF TECH	PROFITEST MF TECH (M534X) test instru- ment with orange PROTECTIVE BUMPER and standard scope of delivery	M535N

valid until 31/12/2023. As long as stocks last. For more information and terms and conditions refer to https://www.gossenmetrawatt.com/lemongreen.

Test Instrument Sets

Designation	Description	Article Number
PROFITEST MF XTRA Starter package	PROFITEST MF XTRA test instrument (M534H) with standard scope of delivery and - VARIO Plug Adapter Set (Z500A) - Probe Set (Z503F) - SORTIMO L-BOXX GM (Z503D) - Foam SORTIMO L-BOXX, Profitest M (Z503E) - IZYTRONIQ BUSINESS ADVANCED - Voucher for 12 months IZYTRONIQ CLOUD	M537K
PROFITEST MF XTRA Master package	PROFITEST MF XTRA Test Instrument (M534H) with standard scope of delivery and - VARIO Plug Adapter Set (Z500A) - Probe Set (Z503F) - PRO-W (Z503A) - METRAFUSE FD PRO Fuse Finder (M660C) - Profi-Case (Z502W) - IZYTRONIQ BUSINESS PROFESSIONAL - Voucher for 12 months IZYTRONIQ CLOUD	M537L
PROFITEST MF XTRA Profi package	PROFITEST MF XTRA test instrument (M534H) with standard scope of delivery and VARIO Plug Adapter Set (Z500A) Probe Set (Z503F) PRO-W (Z503A) E-Clip 2 Current Clamp Transformer (Z591B) AC Current Clamp Sensor Z3512A (Z225A) PRO-RE/Z (Z502T) Profi-Case (Z502W) IZYTRONIQ BUSINESS PROFESSIONAL Voucher for 12 months IZYTRONIQ CLOUD	M537M
PROFITEST MF XTRA 0105 package	PROFITEST MF XTRA Test Instrument (M534H) with standard scope of delivery and METRAVOLT 12D+L Voltage and Continuity Tester (M630G) SORTIMO L-BOXX GM (Z503D) Foam SORTIMO L-BOXX, Profitest M (Z503E) IZYTRONIQ BUSINESS PROFESSIONAL Voucher for 12 months IZYTRONIQ CLOUD	M537H
PROFITEST MF TECH Starter package	PROFITEST MF TECH test instrument (M534K) with standard scope of delivery and VARIO Plug Adapter Set (Z500A) Probe Set (Z503F) SORTIMO L-BOXX GM (Z503D) Foam SORTIMO L-BOXX, Profitest M (Z503E) IZYTRONIQ BUSINESS ADVANCED Voucher for 12 months IZYTRONIQ CLOUD	M537A
PROFITEST MF TECH Master package	PROFITEST MF TECH test instrument (M534K) with standard scope of delivery and VARIO Plug Adapter Set (Z500A) Probe Set (Z503F) PRO-W (Z503A) METRAFUSE FD PRO Fuse Finder (M660C) SP500 Earth Drill (Z503Z) TR50 II Cable Reel for low-resistance and earthing measurements (Z503Y) Profi-Case (Z502W) IZYTRONIQ BUSINESS PROFESSIONAL Voucher for 12 months IZYTRONIQ CLOUD	M537C
PROFITEST MF TECH 0105 package	PROFITEST MF TECH test instrument (M534K) with standard scope of delivery and METRAVOLT 12D+L Voltage and Continuity Tester (M630G) SORTIMO L-BOXX GM (Z503D) Foam SORTIMO L-BOXX, Profitest M (Z503E) IZYTRONIQ BUSINESS PROFESSIONAL Voucher for 12 months IZYTRONIQ CLOUD	M537B

PROFITEST MF Series PROFITEST MF XTRA, MF TECH IEC 60364-6, EN 50110-1

Designation	Description	Article Number
PROFITEST MF TECH EVSE package	PROFITEST MF TECH test instrument (M534K) with standard scope of delivery and — METRALINE PRO-TYP EM II (Z525G) — PRO-RLO 20 (Z505F) — SORTIMO L-BOXX GM (Z503D) — Foam SORTIMO L-BOXX, Profitest M (Z503E) — Protective gloves (Z500Z) — IZYTRONIQ BUSINESS PROFESSIONAL — Voucher for 12 months IZYTRONIQ CLOUD	M537D

Accessories - Device Protection

Designation	Description	Article Number
PROTECTIVE BUMPER	Rubber side elements to protect the instru-	
	ment	
	$2 \times \text{red}$	Z505H
	2 × blue	Z505K
	$2 \times \text{pink}$	Z505N
	$2 \times \text{green}$	Z505M
	$2 \times \text{yellow}$	Z505L
	Set 1	Z5050
	(1× yellow for test probe side and	
	$1 \times \text{red for measuring adapter side}$	
	Set 2	Z505P
	$(1 \times \text{green for test probe side and})$	
	1 × pink for measuring adapter side)	

Report Generating Accessories

Designation	Description	Article Number
Barcode scanner USB ^D	Barcode scanner for USB connection with approx. 1 m cable	Z751A
SCANBASE RFID D	RFID reader/writer	Z751E

Power Supply Accessories

. en el cupily recesseries		
Designation	Description	Article Number
Master Battery Pack	8 rechargeable LSD-NiMH batteries (2000 mAh), sealed with two plastic caps to form one battery pack	Z502H
PROFITEST Battery Pack	8 rechargeable batteries Ni-MH batteries (2500 mAh), sealed with two plastic caps to form one battery pack	Z5020
Charger	Broad-range charger for charging the battery pack inserted in the test instrument (Z502H/Z502O) Input: 100 \dots 240 V_{AC} Output: 16.5 V_{DC} , 1 A	Z502R

Accessory Cases and Trolleys

Designation	Description	Article Number
PROFITEST MASTER Ever-ready case	Ever-ready case with external pockets for accessories	Z502X
E-CHECK-Case	Aluminum case for test instrument and accessories	Z502M
Trolley for E-CHECK-Case	Trolley to which the E-CHECK case can be mounted	Z502N
F2000 ^D	Universal carrying pouch	Z700D
F2020 ^D	Large universal carrying pouch	Z700F
SORTIMO L-BOXX GM	Plastic system case	Z503D
Foam SORTIMO L-BOXX Profitest M	Foam insert for SORTIMO L-BOXX GM with compartment for test instrument	Z503E
Profi-Case	Profi-Case printed with content layout for sets including test instrument plus acces- sories, with trolley mount	Z502W

Accessories - Plug Inserts, Plugs, Measuring Attachments etc.

Designation	Description	Article Number
PRO-HB	Holder for test probes and measuring adapter	Z501V
PRO-Schuko	Plug insert, earthing contact plug: D, A, NL, F etc.	GTZ3228000R0001
PRO-W	Plug insert, angled earthing contact plug: D, A, NL, F etc.	Z503A
PRO-W II	Plug insert, angled earthing contact plug with PE socket	Z503V
PRO-CH	Plug insert per SEV: CH	GTZ3225000R0001
PRO-GB/USA	Plug insert with adapter for GB and USA	Z503B
Probe Set	Test probe set (red/black) CAT III 600 V, 1 A Length 68 mm, dia. 2.3 mm	Z503F
Safety Clip	Safety clips (red/blue) with hook, CAT IV 1 kV, 20 A	Z503W
PRO-PE Clip	Flat test clip for contacting busbars quickly and safely. Good contact at the front and back of the busbar thanks to time-tested contact blades. Rigid 4 mm socket in the handle, suitable for the insertion of spring-loaded 4 mm plugs with rigid insulating sleeve. CAT IV 1000 V, 32 A	Z503G
Magnetic Test Probes	2 touch-guarded magnetic test probes, with magnetic holder, 4 mm sockets, CAT III 1000 V, 4 A	Z502Z
PRO-RLO-II	Plug insert for PE and other similar measure- ments, 2-wire measuring technology, cable length: 10 m, CAT I300 V, 16 A	Z501P
PRO-RLO 20	Measuring adapter for PE and other similar measurements, cable length: 20 m, CAT III 600 V	Z505F
PRO-RLO 50	Measuring adapter for PE and other similar measurements, cable length: 50 m, CAT III 600 V	Z505G
PRO-UNI-II	Plug insert with 3 connector cables for any connection standards, CAT IV 300 V, 16 A	Z501R
Z500A	VARIO plug adapter set (3 self-retaining, contact protected test probes for the connection of measurement cables with 4 mm banana plugs, or with contact protected plugs for sockets with an opening of 3.5 mm to 12 mm, e.g. CEE or Perilex sockets) 600 V per IEC 61010	Z500A

Accessories - Extensions

Designation	Description	Article Number
KS24	Extension cord, 4 m	GTZ3201000R0001
TELEARM 120 ^D	Telescoping rod for RLO and RINS measurements, CAT III 600 V / CAT IV 300 V, 1 A, retracted: 53.5 cm, extended: 120 cm, 190 g	Z505C
TELEARM 180 ^D	Telescoping rod for RLO and RINS measurements, CAT III 600 V / CAT IV 300 V, 1 A, retracted: 73.5 cm, extended: 180 cm, 250 g	Z505D
TELEARM Case	Pouch for TELEARM 120/180 L × W: 920× 170 mm	Z505E

Accessory Test Probes and Sensors

Designation	Description	Article Number
Probe 1081	Triangular probe for floor measurements in accordance with EN 1081 and IEC 60364	GTZ3196000R0001
WZ12C ^D	Current clamp sensor for leakage current, switchable: 1 mA 15 A, 3% and 1 A 150 A, 2%	Z219C
METRAFLEX P300	Flexible AC current sensor, 3/30/300 A, 1 V/100 mV/10 mV/A, with batteries, probe length: 45 cm	Z502E

IEC 60364-6, EN 50110-1

Accessory Adapters

Designation	Description	Article Number
PROFITEST PRCD D	Test adapter for testing portable safety switches (types PRCD-K and PRCD-S) with the help of the PROFITEST MF XTRA (instrument not included)	M512R
PRO-A3-II	2 and 3-pole measuring adapter for 3-phase and rotating-field systems, with coil cables, 300 V/1 A CAT IV with protective cap 600 V/1 A CAT III with protective cap 600 V/16 A CAT II without protective cap	Z5010
PRO-A3-II NCC	2 and 3-pole measuring adapter for 3-phase and rotating-field systems, with straight cables (10 m), 300 V/1 A CAT IV with protective cap 600 V/1 A CAT III with protective cap 600 V/16 A CAT II without protective cap	Z503C
A3-16	5-pole 3-phase adapter for 16 A CEE outlets	GTZ3602000R0001
A3-32	5-pole 3-phase adapter for 32 A CEE outlets	GTZ3603000R0001
sA3-63	5-pole 3-phase adapter for 63 A CEE outlets	GTZ3604000R0001
A3-16 Shielded	7-pole 3-phase adapter Shielded for 16 A CEE outlets, 32 A, CAT III 300 V, 10 A	Z513A
A3-32 Shielded	7-pole 3-phase adapter Shielded for 32 A CEE outlets, 32 A, CAT III 300 V, 10 A	Z513B
ISO Calibrator 1	Calibration adapter for testing the accuracy of measuring instruments for insulation resistance and low-value resistance	M662A
PRO-AB	Leakage current measuring adapter as an accessory with PROFITEST MF XTRA (instrument not included)	Z502S

Designation	Description	Article Number
E-SET PROFESSIONAL	Earth Measurement Accessories Consisting of one carrying pouch, four 500 mm earth drills, one 40 m blue mea- surement cable on cable reel with hand strap, one 20 m red measurement cable on cable reel with hand strap, one 5 m black measurement cable, one 5 m green mea- surement cable, one black test clamp with 4 mm socket, one green test clamp with 4 mm socket, one hammer, one reel tape measure, one dust cloth, one pad with pen	Z592Z
E-SET BASIC	Accessories for earth measurement including one rugged outdoor carrying pouch, two 420 mm earth drills, one 40 m blue measurement cable on cable reel with hand strap (1 kV CAT III), one 20 m red measurement cable on cable reel with hand strap (1 kV CAT III), one 2 m black measurement cable (1 kV CAT IV), one 2 m green measurement cable (1 kV CAT IV), one 30 cm red measurement cable (1 kV CAT IV), one 30 cm blue measurement cable (1 kV CAT IV), one black test clamp with 4 mm socket, one green test clamp with 4 mm socket	Z593A
E-Set 5	Earth measurement case consisting of imitation leather case including one reel with 25 m measurement cable, two reels with 50 m measurement cable each, three 0.5 m measurement cables, one 2 m measurement cable, one test clamp, four 350 mm earth drills, one dust cloth, two pads with forms	Z590B

Earth Measurement Accessories

Designation	Description	Article Number
PRO-RE/2	Measuring adapter for connecting a second clamp (generator clamp), permits 2-clamp measuring method (ground loop measurement)	Z502T
PRO-RE	Connection adapter for earthing accessories for 3/4-wire measurement and selective earthing resistance measurement	Z501S
E-CLIP 2	Generator clamp for 2-clamp measuring method (ground loop measurement) Transformation ratio: 1000A/1A Current measuring range: 0.2 A 1200 A Output signal: 0.2 mA 1.2 A	Z591B
Z3512A ^D	Current clamp sensor for selective earthing measurement and as a clamp meter for the 2-clamp measuring method (earth loop measurement), clamp opening dia. 52 mm, selectable measuring ranges AC 0.0011/10/100/1000 A, transformation ratios AC: 1 V/A 100 mV/A 10 mV/A 1 mV/A, frequency range 1048653kHz, intrinsic error \pm (0.7% 0.2%), CAT III 600 V, cable length 1.5 m	Z225A
TR25II	Cable reel with 25 m measurement cable for low-resistance and earth measurements	Z503X
TR50II	Cable reel with 50 m measurement cable for low-resistance and earth measurements	Z503Y
SP500 earth drill	Earth drill, 50 cm long	Z503Z

E-Mobility Accessories

Designation	Description	Article Number
PROFITEST EMOBILITY	Test adapter for testing of mode 2 and 3, single and 3-phase charging cables	M513R
METRALINE PRO-TYP EM I	Single and 3-phase test adapter for testing the effectiveness of protective measures at electric charging points, simulation of fictitiously connected electric vehicles and simulation of current-carrying capacity of cord sets per IEC 61851-1, measurement inputs: 4 mm safety sockets for L1, L2, L3, N and PE for the test instrument, CP socket	Z525F
METRALINE PRO-TYP EM II	Single and 3-phase test adapter for testing the effectiveness of protective measures at electric charging points, simulation of fictitiously connected electric vehicles and simulation of current-carrying capacity of cord sets per IEC 61851-1, measurement inputs: 4 mm safety sockets for L1, L2, L3, N, PE and earthing contact socket for the test instrument, CP socket	Z525G

IEC 60364-6, EN 50110-1

Fault Simulation Accessories

Designation	Description	Article Number
PROFISIM 1	Installation board with option for fault simulation for measurements per IEC 60364-6 and EN 50110-1, service line with main grounding busbar, external and internal lightning protection, earth measurements, TN/TT systems	M560A
PROFISIM 2	Installation board with option for fault simulation for measurements per IEC 60364-6 and EN 50110, Sub-distribution branch with installation circuits, RCD type B, RCBO (FI/LS)	M560B

© Gossen Metrawatt GmbH

Prepared in Germany • Subject to change without notice / Errors excepted • A PDF version is avilable on the Internet

All trademarks, registered trademarks, logos, product names, and company names are the property of their respective owners.

GOSSEN METRAWATT
Gossen Metrawatt GmbH
Südwestpark 15
90449 Nürnberg • Germany

Phone +49 911 8602-0 Fax +49 911 8602-669

E-Mail info@gossenmetrawatt.com

www.gossenmetrawatt.com

Services d'EURO-INDEX

EURO-INDEX est un fabricant, importateur et distributeur de diverses marques A dans le domaine des instruments de test et de mesure. Nous fournissons également une large gamme de services pour optimiser l'utilisation de ces instruments dans vos activités. Ces services comprennent naturellement l'entretien, la réparation et l'étalonnage des instruments, mais nous proposons aussi une assistance sous forme de formation via notre EURO-INDEX Academy et la location d'instruments.

Centre de Service Agréé

EURO-INDEX est un Centre de Service Agréé pour toutes les marques représentées. Cela signifie que vos instruments sont pris en charge par des techniciens formés par le fabricant et disposant des outils et logiciels adéquats. Seules des pièces d'origine sont utilisées et la garantie de votre instrument, ainsi que les certifications (ATEX, EN50379, etc.) restent intactes.

Laboratoire de maintenance et de calibrage

Le laboratoire des Pays-Bas est accrédité RvA selon la norme EN-ISO/IEC 17025. Cette accréditation est valable pour différentes grandeurs, telles que spécifiées dans le champ d'application associé au numéro d'accréditation K105. Les certificats de calibrage RvA sont acceptés à l'international et équivalents à ceux de BELAC.

Service Mobile

Outre les laboratoires d'étalonnage fixes de Zaventem et de Capelle aan den IJssel, nous disposons également d'un laboratoire itinérant appelé "Service mobile". Nos services puisse venir vers vous, en offrant une qualité équivalente.

MOS®

MQS® est une formule d'entretien exclusive comportant un entretien et un calibrage périodiques de vos instruments de mesure à un coût fixe et faible. Via un portail Web gratuit (monmqs.be), vous avez toujours accès à vos certificats de calibrage.

Location d'instruments de mesure

- Vaste assortiment
- Précision démontrable par le certificat d'étalonnage actuel
- Conseils avisés
- · Les instruments sont livrés avec leurs accessoires

EURO-INDEX Academy

- Formations et seminars
- Vidéos de démonstration et d'instruction
- Notes d'application

Comptoir de service

Entretien, réparation et calibrage

Formations et seminars

Service Mobile

Sous réserve de modifications EURO-INDEX® FR 23001

Chaussée de Louvain 607 1930 Zaventem T: 02 - 757 92 44 F: 02 - 757 92 64 sales@euro-index.be www.euro-index.be Rivium 2e straat 12 2909 LG Capelle a/d IJssel T: +31 - (0)10 - 2 888 000 F: +31 - (0)10 - 2 888 010 verkoop@euro-index.nl www.euro-index.nl

