

3-349-838-03 7/1.24

- Measurement of RLO, ZL-PE, ZL-N, RINS, RE, ΔU, phase sequence and voltage
- Offset management: RL-PE / RN-PE / RL-N
- Measuring functions can be selected directly via the rotary switch
- Testing of RCD types A, AC, F, B, B+, A-EV, B-MI, G/R, SRCDs, PRCDs
- Display of approved fuse types for electrical systems
- Phase sequence measurement (including highest line-to-line voltage)
- Measurement of touch voltage via finger contact
- Connection of an RFID reader or a barcode scanner
- Individual measured value memory and memory structure setup
- Help functions with wiring diagrams
- Bidirectional data exchange via USB, DDS-CAD and epINSTROM
- Measuring category: CAT III 600 V / CAT IV 300 V
- International prompting (12 languages)
- ETC software (Electrical Testing Center) for, amongst other functions, creating tree structures and documentation per ZVEH

The PROFITEST INTRO provides professional electricians with a universal, compact and rugged, state-of-the-art measuring tool. The test instrument is capable of executing all measurements for testing the effectiveness of safety measures in electrical systems as required by IEC 60364-6 (DIN VDE 0100-600) and other country-specific standards, and as specified in the individual sections of DIN EN 61557 (VDE 0413). Thanks to its intelligent and ergo-nomic design, intuitive operation and an advanced technical concept, it's aligned consistently to routine daily tasks making it the ideal companion for any electrician.

Large Voltage and Frequency Ranges

A broad-range measuring device permits use of the test instrument in all alternating and 3-phase electrical systems with voltages from 65 V to 500 V and frequencies of 16 Hz to 400 Hz.

Loop and Line Impedance Measurement

Measurement of loop and line impedance can be performed in the 65 V to 500 V range. Conversion to short-circuit current is based on the respective nominal line voltage, insofar as the measured line voltage is within the specified range. Measuring error for the PROFITEST INTRO is also taken into account for conversion. Outside of this range, short-circuit current is calculated on the basis of momentary line voltage and measured impedance.

Insulation Resistance Measurement Using Nominal Voltage, with Variable or Rising Test Voltage

Insulation resistance is usually measured with a nominal voltage of 500, 250 or 100 V. A test voltage which deviates from nominal voltage, and lies within a range of 20 V/ 50 V to 1000 V, can be selected for measurements at sensitive components, as well as systems with voltage limiting devices.

Measurement can be performed with a constantly rising test voltage in order to detect weak points in the insulation and determine tripping voltage for voltage limiting devices. Voltage at the device under test and any triggering/breakdown voltage appear at the test instrument's display.

Low-Resistance Measurement

Bonding conductor resistance and protective conductor resistance can be measured with a test current of \geq 200 mA $_{DC}$, automatic polarity reversal of the test voltage and selectable current flow direction. If the adjustable limit value is exceeded, an LED lights up.

Testing of residual current devices (RCCBs)

- Testing of equipment and RCCBs with rising residual current including indication of tripping current and touch voltage
- Testing for N-PE reversal
- Testing of RCCBS with the following nominal current values: $\frac{1}{2} \times I_{\Delta N}$, $1 \times I_{\Delta N}$, $2 \times I_{\Delta N}$, $(5 \times I_{\Delta N} \text{ up to 100 mA})$
- Testing of selective S, SRCDs, PRCDs (Schukomat, Sidos and others), types G/R, AC, A and F; types B, B+ and A-EV, B-MI
- Testing of RCCBs

which are suitable for pulsating residual direct and alternating current; testing is conducted with positive or negative half-waves

Display with Selectable Language

The LCD panel consists of a backlit dot matrix at which menus, setting options, measurement results, tables, instructions and error messages, as well schematic diagrams appear.

The display can be set to the desired language depending on the country in which the test instrument is used: D, GB, I, F, E, P, NL, S, N, FIN, CZ or PL.

Operation

Device functions are selected directly with the help of a rotary selector switch. Softkeys allow for convenient selection of subfunctions and parameter settings. Unavailable functions and parameters are automatically prevented from appearing at the display.

Schematic diagrams, measuring ranges and help texts can be displayed for all basic functions and sub-functions.

An optional remote control (Z550A) can be connected for difficult to access locations, from which the RCD tripping function and all other measuring functions can be started.

Phase Tester

Protective conductor potential is tested after starting a test sequence and touching the contact surface for finger contact (by pressing the START key). The PE symbol appears at the display if a potential difference of more than 25 V is detected between the contact surface and the protective contact at the mains plug.

Error Indication

- The instrument automatically detects instrument-to-system connection errors, which are indicated in a connection pictograph.
- Errors within the electrical system (no mains or phase voltage, tripped RCD) are indicated at two LEDs and by means of popup windows at the tilting LCD panel.

Battery Monitoring and Self-test

Battery monitoring is conducted while the instrument is subjected to an electrical load. Results are displayed both numerically and with a symbol. Test images can be called up one after the other, and LEDs and the acoustic signal can be tested during the selftest. Automatic shutdown of the test instrument when the batteries or NiMH rechargeable batteries (option) are depleted. Charging of battery packs listed as accessories with microprocessor controlled charging circuit to assure safe charging.

Data Entry at the RS-232 Port

Data can be read in via a barcode reader or RFID scanner connected to the RS-232 port, and comments can be entered with the help of the softkeys.

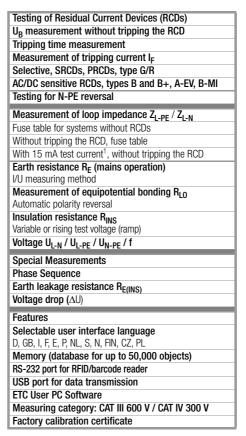
USB Data Interface

Measurement data are transmitted to a PC via the integrated USB port, at which they can be printed in report form and archived.

Software Update

The test instrument can always be kept current thanks to firmware which can be updated via the USB port. A software update is executed during the course of recalibration by our service department.

Observance of International Standards


IEC/ DIN EN 61010; VDE 0411, IEC 60364 / DIN VDE 0100-600 / DIN VDE 0105-100, IEC/ DIN EN 61557; VDE 0413, CEI 64-8, ÖVE/ÖNORM 8001-6, NIV / NIN, CSN 33 2000-6, NEN 1010-6, IEC 60364-4-41; DIN VDE 0100-410

ETC User PC Software

ETC offers a wide variety of support options for data acquisition and management.

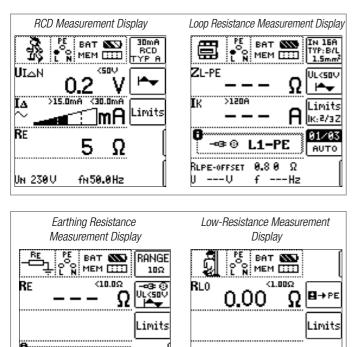
- Amongst other things, the software acquires all important data for reports in accordance with DIN VDE 0100-600.
- Test reports (ZVEH) can be generated automatically.
- Distribution structures with electrical circuit and RCD data can be individually defined.
- Created structures can be saved to memory and loaded to the test instrument as required via the USB port.
- Data can be exported to Excel, CSV and XML formats.

Overview of Included Features

The so-called live measurement is only advisable if there is no bias current within the system. Only suitable for motor protection switches with small nominal current values

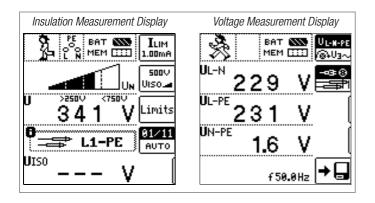
Sample Displays

RE=ZL-PE-%ZL-N R8=0


f ---Hz

0.00 Ω

RLPE-OFFSET


----0

Softkeys allow for convenient selection of sub-functions and parameter settings. Unavailable sub-functions and parameters are automatically prevented from appearing at the display.

Applicable Regulations and Standards

IEC 61010-1/ EN 61010-1/ VDE 0411-1	Safety requirements for electrical equipment for measurement, control and laboratory use Part 1: General requirements (IEC 61010-1 + Cor. :2011) Part 31: Safety requirements for hand-held probe assemblies for electrical measurement and test (IEC 61010-031 + A1)		
IEC 61557/ EN 61557/ VDE 0413	 Part 1: General requirements (IEC 61557-1) Part 2: Insulation resistance (IEC 61557-2) Part 3: Loop resistance (IEC 61557-3) Part 4: Resistance of earth conductors, protective conductors and equipotential bonding conductors (IEC 61557-4) Part 5: Earthing resistance (IEC 61557-5) Part 6: Effectiveness of residual current devices (RCDs) in TT, TN and IT systems (IEC 61557-6) Part 7: Phase sequence (IEC 61557-7) Part 10:Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC – Equipment for testing, measuring or monitoring of protective measures (IEC 61557-10) 		
EN 60529 VDE 0470, part 1	Test instruments and test procedures Degrees of protection provided by enclosures (IP code)		
DIN EN 61326-1 VDE 0843-20-1	Electrical equipment for measurement, control and labo- ratory use – EMC requirements – Part 1: General requirements		
IEC 60364-6 VDE 0100, part 600	Low-voltage electrical installations – Part 6: Tests		
EN 50110-1 VDE 0105-1	Operation of electrical installations – Part 1: General requirements		
IEC 60364-7-710 VDE 0100, part 710	Low-voltage electrical installations – Requirements for special installations or locations – Part 710: Medical locations		

0.43 Ω

→딙

ROFFSET

Characteristic Values

									Co	nnectio	ons
Func- tion	Measured Quantity	Display Range	Reso- lution	Input Impedance / Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	PRO- Schuko adapter		OFITEST TRO 3-pin
	U _{L-PE} U _{N-PE}	0.0 V 99.9 V 100 V to 600 V	0.1 V 1 V		0.3 V 600 V ¹	U _N = 120 V /230 V /	±(2% rdg.+5d) ±(2% rdg.+1d)	±(1% rdg.+5d) ±(1% rdg.+1d)			
	f	15.0 99.9 Hz 100 999 Hz	0.1 Hz 1 Hz	5.110	DC 15.4 Hz 420 Hz	400 V / 500 V	±(0.2% rdg.+1d)	±(0.1% rdg.1d)	•	•	•
	U _{3~}	0.0 V 99.9 V 100 600 V	0.1 V 1 V	- 5 MΩ	0.3 V 600 V	f _N = 16.7 Hz /50 Hz /	±(3% rdg.+5d) ±(3% rdg.+1d)	±(2% rdg.+5d) ±(2% rdg.+1d)			•
	U _{L-N}	0.0 V 99.9 V 100 600 V	0.1 V 1 V		1.0 V 600 V ¹	60 Hz / 200 Hz / 400 Hz	±(3% rdg.+5d) ±(3% rdg.+1d)	$\pm (2\% \text{ rdg.+1d})$ $\pm (2\% \text{ rdg.+5d})$ $\pm (2\% \text{ rdg.+1d})$	•		•
U I _{∆N} I _F _	U _{IAN}	0.0 V 70.0 V	0.1 V	$0.3 imes I_{\Delta N}$	5 70 V		+13% rdg. + 1 d	+1 % rdg1 d +9% rdg. + 1 d			
		10 Ω 999 W 1.00 kΩ 6.51 kW	1 Ω 0.01 kΩ	$I\Delta_{\rm N} = 10 \ {\rm mA} \times 1.05$							
		3 Ω … 999 W 1 kΩ … 2.17 kW	1 Ω 0.01 kΩ	$I\Delta_N = 30 \text{ mA} \times 1.05$	Calculated value	U _N = 120 V 230 V					
	R _E	1Ω651 W	1Ω	$I\Delta_N = 100 \text{ mA} \times 1.05$	from	400 V ²					
		0.3 Ω 99.9 W 100 Ω 217 W	0.1 Ω 1 Ω	$l\Delta_N=300~mA\times 1.05$	$R_{E} = U_{I\Delta N} / I_{\Delta N}$	f _N =					
		0.2 Ω 9.9 W 10 Ω 130 W	0.1 Ω 1 Ω	$I\Delta_N = 500 \text{ mA} \times 1.05$	*	50 Hz / 60 Hz					
	$I_F (I_{\Delta N} = 6 \text{ mA})$	1.8 7.8 mA		1.8 7.8 mA	1.8 7.8 mA	U _L = 25 V / 50 V			•	•	
	$I_F (I_{\Delta N} = 10 \text{ mA})$ $I_F (I_{\Delta N} = 30 \text{ mA})$	3.0 13.0 mA 9.0 39.0 mA	0.1 mA	3.0 13.0 mA 9.0 39.0 mA	3.0 13.0 mA 9.0 39.0 mA	$I_{\Delta N} =$					
	$I_F (I_{\Delta N} = 30 \text{ mA})$ $I_F (I_{\Delta N} = 100 \text{ mA})$	30 130 mA	1 mA	30 mA 130 mA	30 mA 130 mA	6 mA	±(7% rdg.+2d)	±(3.5% rdg.+2 d)			
	$I_F (I_{AN} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	10 mA 30 mA					
	$I_{\rm F} (I_{\Delta \rm N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA	100 mA					
	$U_{L\Delta}/U_L = 25 V$	0.0 V 25.0 V	0.1 V	Same as I_{Δ}	0 V 25.0 V	300 mA	+10% rdg. + 1 d	+1 % rdg1 d			
	$U_{L\Delta} / U_L = 50 V$	0.0 V 50.0 V			0 V 50.0 V	500 mA ²	+10%10g. + 1 u	+9% rdg.+ 1d			
	$t_A (I_{\Delta N} \times 1)$	0 ms 999 ms	1 ms	6 mA 500 mA	0 ms 999 ms						
	$t_A (I_{\Delta N} \times 2)$	0 ms 999 ms	1 ms	2 × 6 mA 2 ×500 mA	0 ms 999 ms		±4 ms	±3 ms			
	$t_A (I_{\Delta N} \times 5)$	0 ms 40 ms	1 ms	5 × 6 mA 5 ×300 mA	0 ms 40 ms						
	$Z_{L-PE} (\frown)$ Z_{L-N}	0 mΩ 999 mW 1.00 Ω 9.99 W	1 mΩ 0.01 Ω 0.1 Ω		300 mΩ 999 mW 1.00 Ω 9.99 W	U _N = 120 V /230 V / 400 V / 500 V ¹ f _N = 16.7 Hz / 50 Hz / 60 Hz	±(10% rdg.+30d) ±(8% rdg.+3d)	±(5% rdg.+30d) ±(3% rdg.+3d)			
-	Z _{L-PE} + DC	0 mΩ 999 mW 1.00 Ω 9.99 W 10.0 Ω 29.9 W	0.1 22	1.3 A _{AC} 3.7 A _{AC} 0.5 A _{DC} /1.25 A _{DC}	$\begin{array}{c} \text{500 m}\Omega \ \dots \ \text{999 mW} \\ \text{1.00 }\Omega \ \dots \ \text{9.99 W} \end{array}$	$\begin{array}{l} U_{N} = 120 \; V \; / \; 230 \; V \\ f_{N} = 50 \; \text{Hz} \; / \; 60 \; \text{Hz} \end{array}$	\pm (18% rdg.+30d) \pm (10% rdg.+3d)	\pm (6% rdg.+50d) \pm (4% rdg.+3d)			
Z _{L-PE} Z _{L-N}	I_{K} (Z _{L-PE} , Z _{L-PE} + DC)	0.0 A 9.9 A 10 999 A 1.00 9.99 kA 10.0 50.0 kA	0.1 A 1 A 10 A 100 A		120 V (108 V 132 V) 230 V (196 V 253 V) 400 V (340 V 440 V) 500 V (450 V 550 V)		Value calcula	ted from Z _{L-PE}	•	• Z _{L-PE}	
		0.5 Ω 9.99 W	0.01 Ω			splay range only			_		
	Z _{L-PE} (15 mA)	10.0 Ω 99.9 W 100 Ω 999 W	0.1 Ω 1 Ω		10.0 Ω 99.9 W 100 Ω 999 W	U _N = 120 V / 230 V	±(10% rdg.+10d) ±(8% rdg.+2d)	±(2% rdg.+2d) ±(1% rdg.+1d)			
	I _K (15 mA)	100 999 mA 0.00 A 9.99 A 10.0 A 99.9 A	1 mA 0.01 A 0.1 A	$15 \text{ mA}_{AC} \qquad \begin{array}{c} \hline Calculated value \\ depends \\ 0 \text{ nU}_{\text{M}} \text{ and } Z_{L-PE}; \\ I_{K}=U_{N}/10 \ \Omega \dots 1000W \end{array} \qquad \begin{array}{c} \hline S_{N} = (L_{D} \text{ V} / 2 \text{ ov } U_{\text{D}} + 2 \text{ ov } 2 $							
R _E	R _E (A	0 mΩ 999 mW 1.00 Ω 9.99 W 10.0 Ω 99.9 W 100 Ω 999 W 1 kΩ 9.99 kW	1 mΩ 0.01 Ω 0.1 Ω 1 Ω 0.01 kΩ	$\begin{array}{c} 1.3 \ A_{AC} \ldots \ 3.7 \ A_{AC} \\ 1.3 \ A_{AC} \ldots \ 3.7 \ A_{AC} \\ 400 \ mA_{AC} \\ 40 \ mA_{AC} \\ 4 \ mA_{AC} \end{array}$	300 mΩ 999 mW 1.00 Ω 9.99 W 10.0 Ω 99.9 W 100 Ω 999 W 1.00 kΩ 9.99 kΩ	$\begin{array}{l} U_{N} = 120 \; V / 230 \; V \\ U_{N} = 400 \; V \; ^{1} \\ f_{N} = 50 \; \text{Hz} / \; 60 \; \text{Hz} \end{array}$	$\begin{array}{c} \pm (10\% \ \text{rdg.} + 30d) \\ \pm (5\% \ \text{rdg.} + 3d) \\ \pm (10\% \ \text{rdg.} + 3d) \end{array}$	$\begin{array}{c} \pm (5\% \text{ rdg.} + 30\text{d}) \\ \pm (3\% \text{ rdg.} + 3\text{d}) \end{array}$	•	•	
E	R _E DC+	0 Ω 999 mW 1.00 Ω 9.99 W 10.0 Ω 29.9 W	1 mΩ 0.01 Ω 0.1 Ω	1.3 A _{AC} 3.7 A _{AC} 0.5 A _{DC} / 1.25 A _{DC}	500 mΩ 999 mW 1.00 Ω 9.99 W	$\begin{array}{l} U_{N} = 120 \; V \; / \; 230 \; V \\ f_{N} = 50 \; Hz \; / \; 60 \; Hz \end{array}$	±(18% rdg.+30d) ±(10% rdg.+3d)	±(6% rdg.+50d) ±(4% rdg.+3d)			
	U _F	0 253 V	1 V	—	Calculated value				1		
Ub	Ub	Limit LED on		Reb = 100 k Ω	0 V 440 V	$\begin{array}{l} U_{N} = 120 \; V / 230 \; V / \\ 400 \; V \\ f_{N} = 50 \; \text{Hz} / 60 \; \text{Hz} \end{array}$	$45~V\pm15~V$	$45V\pm5V$	Finç	ger con	tact

Characteristic Values (continued)

				la su d					Co	nnectio	ons
Func- tion	Measured Quantity	Display Range	Reso- lution	Input Impedance / Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	PRO- Schuko adapter	KS-PRO INT 2-pin	OFITEST TRO 3-pin
R _{ISO}	R _{INS} , R _{E INS}	$\begin{array}{c} 1 \ \text{k}\Omega \ 999 \ \text{kW} \\ 1.00 \ \text{M}\Omega \ 9.99 \ \text{MW} \\ 10.0 \ \text{M}\Omega \ 9.99 \ \text{MW} \\ 10.0 \ \text{M}\Omega \ 9.99 \ \text{MW} \\ 1.00 \ \text{M}\Omega \ 9.90 \ \text{MW} \\ 1.00 \ \text{M}\Omega \ 9.00 \ \text{M} \ 9.00 \ 9.00 \ \text{M} \ 9.00 \ $	100 kΩ 1 kΩ 10 kΩ 100 kΩ 1 kΩ 10 kΩ 100 kΩ 1 MΩ 1 kΩ 10 kΩ	I _K = 1.5 mA	50 kΩ 300 MW	$\begin{split} & U_N = 50 \ V \\ & I_N = 1 \ mA \\ \\ & U_N = 100 \ V \\ & I_N = 1 \ mA \\ \\ & U_N = 250 \ V \\ & I_N = 1 \ mA \\ \\ & U_N = 500 \ V \\ & U_N = 1000 \ V \\ & I_N = 1 \ mA \end{split}$	KΩ range ±(6% rdg.+10d) M rangeΩ ±(6% rdg.+1d)	kΩ range ±(3% rdg.+10d) M rangeΩ ±(3% rdg.+1d)	•	•	
	U	10 V _{DC} 999 V _{DC} 1.00 kV 1.19 kV	1 V 10 V		10 1.19 kV		±(3% rdg.+1d)	±(1.5% rdg. + 1 d)			
R _{LO}	R _{LO}	$\begin{array}{c} 0.01 \ \Omega \ \dots \ 9.99 \ W \\ 10.0 \ \Omega \ \dots \ 99.9 \ W \\ 100 \ \Omega \ \dots \ 99 \ W \end{array}$	10 mΩ 100 mΩ 1 Ω	$I_{m} \ge 200 \text{ mA}$ $I_{m} < 200 \text{ mA}$	0.20 Ω 4.00 Ω 4.01 Ω 99.9 Ω	$U_0 = 4.5 V$	±(5% rdg.+2d)	±(2% rdg.+2d)		•	

 1 U >230 V with KS-PROFITEST INTRO only 2 1 \times I_{ΔN} >300 mA and 2 \times I_{ΔN} >300 mA and 5 \times I_{ΔN} >500 mA and I_f >300 mA only up to U_N ≤230 V! 5 \times I_{ΔN} >300 mA with U_N = 230 V only!

Key: d = digit(s), rdg. = reading (measured value)

Reference Conditions

Line voltage Line frequency	230 V ± 0.1 % 50 Hz ± 0.1 % 45 Hz 65 Hz
Measured qty. frequency Measured qty. waveform	Sine (deviation between RMS and
	rectified value $\leq 0.1\%$)
Line impedance angle	$\cos \varphi = 1$
Supply voltage	12 V ± 0.5 V
Ambient temperature	+ 22 °C ± 3 K
Relative humidity	45 % ±10 %

Nominal Ranges of Use

Voltage U _N	120 V 230 V 400 V	(108 132 V) (196 253 V) (340 440 V)
Frequency f _N	16.7 Hz 50 Hz 60 Hz 200 Hz 400 Hz	(15.4 18 Hz) (49.5 50.5 Hz) (59.4 60.6 Hz) (190 210 Hz) (380 420 Hz)
Overall voltage range U_Y	65 550 V	
Overall frequency range	15.4 420 H	łz
Line voltage	Sinusoidal	
Temperature range	0 °C + 40 °	°C
Supply voltage	8 12 V	
Line impedance angle	Corresponds	to $\cos \varphi = 1 \dots 0.95$

Power Supply

Batteries, rechargeable NiMH batteries	8 each AA 1.5 V We recommend using an optionally available battery pack (Z505U 2620 mAh)
Number of measuremen	ts (standard setup with illumination)
– For R _{INS}	1 measurement – 25 s pause: approx. 1450 measurements with battery pack Z505U
– for R _{LO}	Auto polarity reversal / 1 Ω (1 measuring cycle) – 25 s pause: approx. 1600 measurements with battery pack Z505U
Battery test	Symbolic display of battery voltage
Power Management	Display illumination can be switched off. The test instrument is switched off automatically after the last key opera- tion. The user can select the desired on-time.
Safety shutdown	If supply voltage is too low (U < 8.0 V), the instrument is switched off, or can- not be switched on.
Recharging socket	Inserted battery packs* can be charged directly with the Z502R charger by connecting it to the charging socket.
Charging time	Battery pack (optionally available, listed as accessory) with Z502R charger: approx. 2 hours**
* only optionally availal	ole battery packs, listed as accessories

Maximum charging time with fully depleted batteries. A timer in the charger limits charging time to no more than 4 hours.

Overload Capacity

		Amplent Condition	S
U _{L-PE} , U _{L-N}	600 V continuous		
RCD, R _E	440 V continuous	Accuracy	0 + 40 °C
Z _{L-PE} , Z _{L-N}	550 V (Limits the number of measurements	Operation	−5 + 50 °C
	and pause duration. If overload occurs, the instrument is switched off by means of a thermostatic switch.)	Storage	-20 + 60 °C (without batteries/rechargeable batteries/battery pack)
R _{LO}	Electronic protection prevents switching on if interference voltage is present.	Relative humidity	max. 75%, (max. 85 % for storage/transport)
Protection with			no condensation allowed
2 fine-wire fuses	FF 3.15 A 10 s,	Elevation	Max. 2000 m
	Fuses blow at > 5 A	Calibration interval	1 year (recommended)

Electrical Safety

Mechanical Design

Display

Weight

Protection

Dimensions

Ambiant Conditiona

Protection class	II per IEC 61010-1/EN 61010-1/ VDE 0411-1
Nominal voltage	230/400 V (300/500 V)
Test Voltage	3.7 kV, 50 Hz
Measuring category	CAT III 600 V or CAT IV 300 V
Pollution degree	2
Fuses	
L and N terminals	1 G fuse-link ea.
	FF 3.15 A, 600 V
	6.3 mm × 32 mm

Electromagnetic Compatibility (EMC)

Product standard	EN 61326-1	
Interference emission		Class
EN 55022		A
Interference immunity	Test value	Feature
EN 61000-4-2	Contact/atmos 4 kV/8 kV	
EN 61000-4-3	3 V/ M	

Data Interfaces

Туре	USB (2.0; type B socket) for PC connection
Туре	RS-232 for connecting barcode Reader or RFID scanner

Multiple display with dot matrix

Dimensions: 65 mm × 65 mm

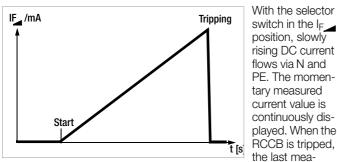
 $W \times L \times H = 225 \text{ mm} \times 130 \text{ mm}$

Approx. 1.5 kg with batteries/NiMH rechargeable NiMH batteries

Measurement cables and connectors:

 128×128 pixels

×140 mm


Housing: IP 52

IP40 per EN 60529

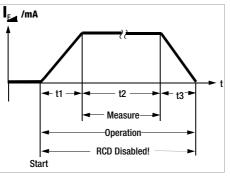
backlit (transflective),

Special Functions

Tripping Test for Type B, AC/DC Sensitive RCDs $\boxtimes \blacksquare$ with Rising DC Residual Current and Measurement of Tripping Current

sured current value is displayed. A greatly reduced rate of increase is used for delayed RCCBs (type \underline{S}).

Tripping Test for Type B, AC/DC Sensitive RCDs with Constant DC Residual Current and Measurement of Tripping Time

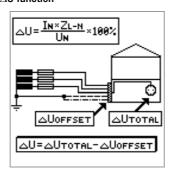

With the selector switch set to the respective nominal residual current, twice the selected nominal current flows via N and PE. Time to trip is measured for the RCCB and displayed.

Loop Resistance Measurement with Suppression of RCD Tripping

The test instruments make it possible to measure loop impedance in TN systems with type A, F \bowtie and AC RCCBs \sim (10 mA/30 mA/100 mA/300 mA/500 mA nominal residual current).

The respective test instrument generates a DC residual current to this end, which saturates the RCCB's magnetic circuit. The test instrument then superimposes a measuring current which only demonstrates half-waves

of like polarity. The


RCCB is no longer capable of detecting this measuring current and is consequently not tripped during measurement.

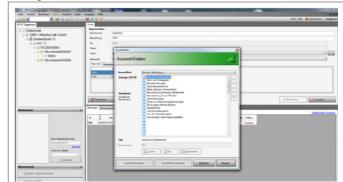
Voltage drop measurement (at $Z_{LN})$ – ${\bigtriangleup U}$ function

According to DIN VDE 100, part 600, voltage drop from the intersection of the distribution network and the consumer system to the point of connection of an electrical power consumer (electrical outlet or device connector terminals) should not exceed 4% of nominal line voltage.

Voltage drop calculation: $\Delta U = Z_{L-N} \times \text{nominal current of} \label{eq:L-N}$ the fuse

$$\Delta U$$
 as % = $\Delta U / U_{L-N}$

ETC User PC Software


(Download from our homepage at:

https://www.gossenmetrawatt.de/en/products/software-and-accessories/software/product-specific-software/test-technology/etc/)

Creation of Individualized Test Structures at a PC and Transfer to the Test Instrument

BIGIAGASIA	A DOD O		Peril III . E. Scienter - A
CExpierrer	Dea		THE BY DEPOSITOR
	Garatata		
Cateribank	Internet	10000	
GRC-I Mestedink GrbH Globesbark 15	heatings	10	
Dia HV 13		10	
BCD000004	ine .	38/2/5 H // 3	
Stronies0000005	100	selt kinet	
1			
500mlevels0000005	bearier.	*	
	Dearb her		
		Nat Desperit Solarden	
	100	1977	
	-		
	Rtubber		Variation Kinima
	Rater Skin	a dia ma	
47-mit 0	1		Siteste.
		encenne	Street.
	1	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Street.
	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Salaute
	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Situati
	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Sinute
Tau Optimiting	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Simula
	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	inut.
Teachysbandrog Security 173	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Schuete.
Seafgebeeling Scales 111 Anti-Alian Anti-Alian	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Source.
Recting Sectors	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Serve.
Face Spectroschurg Landower Tritt Analt in Theory	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Smar.
Radipleador Gradiet Antis Rate (Jongs	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Streat :
Face Spectroschurg Landower Tritt Analt in Theory	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Street a
Teachpeloestory Generative Consummer Constantive Const	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Janut 1
Radipleador Gradiet Antis Rate (Jongs	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Janet.
Teachpeloestory Generative Consummer Constantive Const	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	
Shiroma	-	Ter Ta Saus Inde Kar Sarrad Sateria Naka	Janet.

Editing of Selection Lists

Report Generation

Accessories

Report Generating Accessories

See also separate "ID systems" data sheet.

Barcode reader for connection to the RS-232 port at the test instrument (Z502F) / PROFISCAN ETC (ring binder with barcodes) (Z502G)

Barcode and Label Printer for USB Connection to a PC (Z721E)

Barcode/label printer for connection to a PC for self-adhesive, smudge-proof barcode labels – for identifying devices and system components. Devices and system components can be logged by our test instruments, and acquired measured values can be allocated to them with the scanner.

SCANBASE RFID Reader for Connection to the RS-232 Port at the Tester (Z751G)

The SCANBASE RFID is used to identify tools and equipment: The RFID reader scans the code and forwards it to our test instruments in order to unequivocally assign the measured values and test results to a device under test.

The Z751G RFID reader is preprogrammed to scan the following RFD tags.

10	wing г				
	rder 0.	Frequency	Standard	Layout	Quantity per Package
Z	751R	13.56 MHz	ISO 15693	Dia. approx. 22 mm, self-adhesive	500 pieces
Z	751S	13.56 MHz	ISO 15693	Dia. approx. $30 \times 2 \text{ mm}$ with 3 mm hole	500 pieces
Z	751T	13.56 MHz	ISO 15693	Pigeon ring, dia. approx. 10mm	250 pieces

Power Supply Accessories

Battery pack (Z505U 2620 mAH)

Accessory Plug Inserts and Adapters

PRO-Schuko Measuring Adapter (Z503K)

Single-phase measuring adapter for the PROFIT-EST INTRO, earthing contact plugs to three 4 mm touch-guarded safety plugs (black, blue, yellowgreen), 230 V AC, 300 V CAT III, 16 A

Charger

PRO-CH Measuring Adapter (Z503M)

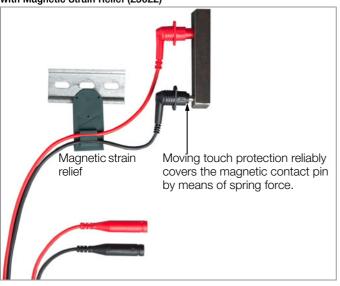
Single-phase measuring adapter for the PROFIT-EST INTRO, earthing contact plugs to three 4 mm safety plugs (black, blue, yellow-green), 230 V AC, touch-guarded, measuring category: CAT III, 300 V, 16 A

PRO-JUMPER

Touch-guarded short-circuit adapter for the PROFITEST INTRO for measurement cable compensation

Z550A test probe for remote triggering

Test Probes (length: 68 mm, diameter: 2.3 mm)-Set Probes (Z503F)


PRO-PE Clip - Flat Test Clip for Busbars (Z503G)

Telescoping Rod TELEARM 120 (Z505C)

Magnetic Measuring Probes (patented) with Magnetic Strain Relief (Z502Z)

1081 Floor Probe

5-pole 3-phase adapter

makes it possible to measure the resistance of insulating floors in accordance with IEC 60364-6 and EN 1081.

3-phase adapters

- A3-16 (GTZ3602000R0001)
- A3-32
- (GTZ3603000R0001) A3-63
- (GTZ3604000R0001)

permit trouble-free connection of test instruments to 5-pole CEE outlets The three variants differ with regard to plug size, which

corresponds respectively to 5-pole CEE outlets with current ratings of 16, 32 and 63 A. Phase sequence is indicated with lamps at all three variants. Testing the effectiveness of safety measures is conducted via five 4 mm sockets with touch protection.

7-pole 3-phase adapter

A3-32 Shielded (Z513B)

Shielded A3-16 and A3-32 three-phase adapters are used for trouble-free connection of test instruments to 7-pole CEE outlets. The two variants differ with regard to plug size, which corresponds respectively to 7-pole CEE outlets with current ratings of 16 and 32 A. Testing the effectiveness of

safety measures is conducted via seven 4 mm sockets with touch protection.

VARIO Plug Adapter Set (Z500A)

Three self-retaining test probes with touch protection for the connection of measurement cables with 4 mm banana plugs, or with touch protected plugs for sockets with an opening of 3.5 mm to 12 mm, e.g. CEE or Perilex sockets etc.

For example, the test probes also fit the square PE jacks on Perilex sockets. Maximum allowable operating voltage: 600 V per IEC 61010.

ISO Calibrator 1 (M662A)

Calibration adapter for rapid, efficient testing of the accuracy of measuring instruments for insulation resistance and low-value resistors

Accessories for Low-Resistance Measurement

TR25II Cable Reel (Z503X)

25 m measurement cable coiled onto a plastic reel. Connection to the inside end of the cable is made possible with two sockets integrated into the reel. The other end is equipped with a banana plug.

TR50II Cable Reel (Z503Y)

50 m measurement cable coiled onto a plastic reel. Connection to the inside end of the cable is made possible with two sockets integrated into the reel. The other end is equipped with a banana plug.

Accessory Cases and Pouches

SORTIMO L-BOXX GM (Z503D)

Plastic system case, outside dimensions: W x H x D $450 \times 255 \times 355 \text{ mm}$

Z503O foam insert for test instrument and accessories must be ordered separately (see below).

Foam Insert for SORTIMO L-BOXX GM (Z5030)

METRISO-PROFITEST Ever-Ready Case (Z550C)

F2010 Universal Carrying Pouch (Z700G) for Measuring Instrument and Accessories

Scope of Delivery

- 1 Test instrument
- 1 Shoulder strap
- 1 Battery pack (8 batteries + holder)
- 1 KS-PROFITEST INTRO (Z503L)
- 1 USB cable
- 1 Factory calibration certificate
- 1 Condensed operating instructions
 - Comprehensive operating instructions available on the Internet for download at www.gossenmetrawatt.com

Order Information

Test Instrument and Sets

When placing your order, you have the choice between the single test instrument with standard scope of delivery (see above) or instrument sets consisting of test instrument with standard scope of delivery and extended accessories.

Designation	Description / Scope of Delivery	Article Number
PROFITEST INTRO	Test instrument with standard scope of delivery	M520T
Starter Package PROFITEST INTRO	Test instrument with standard scope of delivery and – PRO-Schuko Measuring Adapter (Z503K) – PRO-Jumper (Z503J) – F2010 Universal Carrying Pouch (Z700G) – Battery pack (Z505U) – METRISO / PROFITEST Charger (Z502R)	M503A
Master Package PROFITEST INTRO	Test instrument with standard scope of delivery and – test probe with remote triggering (Z550A) – VARIO Plug Adapter Set (Z500A) – Probe Set (Z503F) – PRO-Schuko Measuring Adapter (Z503K) – PRO-Jumper (Z503J) – SORTIMO L-BOXX (Z503D) – Foam SORTIMO L-BOXX (Z503O) – Battery pack (Z505U) – METRISO / PROFITEST Charger (Z502R)	M503B

Power Supply Accessories

Designation	Description / Scope of Delivery	Article Number
Battery pack	8 rechargeable NiMH batteries (2620 mAh), sealed with two plastic caps to form one battery pack	Z505U
Charger METRISO/ PROFITEST	 Broad-range charger for charging the battery pack inserted in the test instru- ment (Battery pack Z505U) Input: 100 240 V AC; Output: 16.5 VDC, 1 A 	Z502R

Accessory Plug - Inserts and Adapters

Designation	Description / Scope of Delivery	Article Number
PRO-Schuko measuring adapter	Country-specific, single-phase measuring adapter for the PROFITEST INTRO, earth- ing contact plug to three 4 mm safety plugs (black, blue, yellow-green), 230 VAC, touch-guarded, measuring category: CAT III, 300 V, 16 A	Z503K
PRO-CH measuring adapter	Country-specific, single-phase measuring adapter for PROFITEST INTRO, earthing contact plug to three 4 mm safety plugs (black, blue, yellow-green), 230 VAC, touch-guarded, measuring category CAT III, 300 V, 16 A	Z503M
KS-PROFITEST INTRO	Measurement cables (black, blue, yellow- green) with test probe and safety caps for 600 V CAT III / 300 V CAT IV, as well as alligator clips for 1000 V CAT III	Z503L
PRO-JUMPER	Country-specific, touch-guarded short- circuit adapter for the PROFITEST INTRO for measurement cable compensation	Z503J

Designation	Description / Scope of Delivery	Article Number
PRO-JUMPER-CH	Country-specific, touch-guarded short- circuit adapter for the PROFITEST INTRO for measurement cable compensation	Z503P
Test Tip for remote triggering METRISO-PROFITEST	Test probe with measurement key and an additional key for illuminating the mea- suring point, including shielded connector cable and test probe holder for the carry- ing strap	Z550A
Probe set	Set of test probes (red/black) CAT III 600 V, 1 A, test probe working range: 68 mm – diameter: 2.3 mm	Z503F
PRO-PE Clip	Flat test clip for contacting busbars quickly and safely. Good contact at the front and back of the busbar thanks to time-tested contact blades. Rigid 4 mm socket in the handle, suitable for the insertion of spring-loaded 4 mm plugs with rigid insulating sleeve. 1000 V CAT IV, 32 A	Z503G
TELEARM 120 ^{D)}	Telescoping rod for RLO and RINS mea- surements, CAT III 600 V / CAT IV 300 V, 1 A, retracted: 53.5 cm, extended: 120 cm, 190 g	Z505C
TELEARM 180 ^{D)}	Telescoping rod for RLO and RINS mea- surements, CAT III 600 V / CAT IV 300 V, 1 A, retracted: 73.5 cm, extended: 180 cm, 250 g	Z505D
TELEARM case	Pouch for TELEARM 120/180 L \times W: 920 \times 170 mm	Z505E
Probe 1081	Triangular probe for floor measurements in accordance with EN 1081 and DIN VDE 0100	GTZ3196000R0 001
Set 3-magnetic test probes	2 magnetic test probes with touch protec- tion, set including magnetic holder, 5.5 mm measuring contact diameter, insulated, CAT III 1000 V, 4 A, temperature from -10 +60 °C, holder power under standard con- ditions with flat head screws: 1200 g per- pendicular to the contact surface; measur- ing instrument connection for PRO-A3-II via 4 mm sockets	Z502Z
A3-16	5-pole 3-phase adapter for 16 A CEE outlets	GTZ3602000R0 001
A3-32	5-pole 3-phase adapter for 32 A CEE outlets	GTZ3603000R0 001
A3-63	5-pole 3-phase adapter for 63 A CEE outlets	GTZ3604000R0 001
A3-16 Shielded	7-pole 3-phase adapter shielded for 16 A CEE outlets, CAT III 300 V, 10 A	Z513A
A3-32 Shielded	7-pole 3-phase adapter shielded for 32 A CEE outlets, CAT III 300 V, 10 A	Z513B
Z500A	VARIO Plug Adapter Set	Z500A
ISO Calibrator 1	Calibration adapter for testing the accuracy of measuring instruments for insula- tion resistance and low-value resistance	M662A

Accessories - Low-Resistance Measurement

Designation	Description / Scope of Delivery	Article Number
TR25II	Cable reel with 25 m measurement cable for low-resistance and earth measurements	Z503X
TR50II	Cable reel with 50 m measurement cable for low-resistance and earth measurements	Z503Y
Accessory – Cases and Pouches		
Designation	Description / Scope of Delivery	Article Number
SORTIMO L-BOXX GM	Plastic system case	Z503D
Foam SORTIMO L-BOXX PROFITEST INTRO	Foam insert for SORTIMO L-BOXX GM with compartments for PROFITEST INTRO, ME- TRISO INTRO/ BASE/ TECH/ PRO/ XTRA	Z5030
METRISO-PROFITEST Ever-Ready Case	Ever-ready case with external pocket for measurement cables for PROFITEST IN- TRO, METRISO INTRO/BASE/ TECH/PRO/ XTRA	Z550C
F2010	Large universal carrying pouch with flexi- ble compartments and display protection, suitable for many different measuring and test instruments, 380 × 230 × 270 mm	Z700G

Report Generating Accessories

Designation	Description / Scope of Delivery	Article Number
Barcode Profiscanner RS 232	Barcode reader/scanner with laser, for test instruments with RS-232 port, with coiled cable, approx. 1 m	Z502F
Profiscan Brochure D	Ring binder with preprinted barcodes for scanning (German)	Z502G
SCANBASE RFID	RFID reader/writer	Z751G

Accessories - PC Software

Designation	Description / Scope of Delivery	Article Number
ETC	Report generating software with options for data acquisition and management as well as for the generation of test reports (scope of functions depends on the test instrument), for many different measuring and test instruments	ETC

For further information please refer to:

- in our Measuring Instruments and Testers catalog
- on the Internet at www.gossenmetrawatt.com

© Gossen Metrawatt GmbH

Prepared in Germany • Subject to change without notice / Errors excepted

All trademarks, registered trademarks, logos, product names, and company names are the property of their respective owners.

 Phone
 +49 911 8602-0

 Fax
 +49 911 8602-669

 E-Mail
 info@gossenmetrawatt.com

 www.gossenmetrawatt.com

Diensten van EURO-INDEX

EURO-INDEX is fabrikant, importeur en distributeur van diverse A-merken op het gebied van test- en meetinstrumenten. Daarnaast leveren wij een groot aantal diensten om het gebruik van deze instrumenten in uw bedrijfsvoering te optimaliseren. Dit omvat uiteraard onderhoud, reparatie en kalibratie van de instrumenten, maar ook kennisdeling via EURO-INDEX Academy en verhuur van instrumenten.

Geautoriseerd Service Centrum

EURO-INDEX b.v. is van alle vertegenwoordigde merken een Geautoriseerd Service Centrum. Dit betekent dat uw instrumenten worden behandeld door technici die zijn opgeleid door de fabrikant en beschikken over de juiste gereedschappen en software. Er worden uitsluitend originele onderdelen toegepast en de garantie van uw instrument, evenals de certificering (ATEX, EN50379, etc.) blijven intact.

Kalibratielaboratorium

Het laboratorium in Nederland beschikt over een RvA accreditatie naar EN-ISO/IEC 17025. Deze accreditatie geldt voor grootheden, zoals gespecificeerd in de scope bij accreditatienummer K105. RvA kalibratiecertificaten zijn internationaal geaccepteerd en is gelijkwaardig aan BELAC.

Mobiele Service

Naast de vaste kalibratielaboratoria in Zaventem en Capelle aan den IJssel beschikken wij ook over een laboratorium op wielen met de naam "Mobiele Service". Dit biedt vertrouwde service en kwaliteit, bij u voor de deur!

KWS®

KWS[®] is een uniek servicesysteem voor uw meetinstrumenten met periodiek onderhoud en kalibratie tegen vaste, lage kosten. Via een gratis webportal (<u>mijnkws.be</u>) heeft u altijd en overal beschikking over uw kalibratiecertificaten.

Verhuur van meetinstrumenten

- Uitgebreid assortiment
- Nauwkeurigheid aantoonbaar door actueel kalibratiecertificaat
- Deskundig advies
- Complete levering inclusief accessoires

EURO-INDEX Academy

- Trainingen, seminars en workshops
- Demonstratie- en instructievideo's
- Application notes

Servicebalie

Onderhoud, reparatie en kalibratie

Trainingen en seminars

Mobiele Service

Wijzigingen voorbehouden EURO-INDEX® VL 23001

Leuvensesteenweg 607 1930 Zaventem T: 02 - 757 92 44 F: 02 - 757 92 64 sales@euro-index.be www.euro-index.be Rivium 2e straat 12 2909 LG Capelle a/d IJssel T: +31 - (0)10 - 2 888 000 F: +31 - (0)10 - 2 888 010 verkoop@euro-index.nl www.euro-index.nl

